BibTex RIS Cite

MODULES WITH VALUES IN THE SPACE OF ALL DERIVATIONS OF AN ALGEBRA

Year 2014, Volume: 2 Issue: 2, 1 - 18, 01.12.2014

Abstract

In this paper, we construct a groupoid associated to a modulewith values in the space of all derivations of a unital algebra. More precisely,for a pair (A, G) consisting of an algebra A with a unit, a module G over thecenter Z(A) of A together with a homomorphism of Z(A)-modules from G tothe space of all derivations Der(A) of A, we associate a groupoid. We discusson the equivalence relation induced from this groupoid

References

  • H. Abbasi, GH. Haghighatdoost, Groupoid associated to a smooth manifold (preprint).
  • R. Brown, From groups to groupoids, a brief survey, Bull. London Math. Soc., 19 (1987) 113-134.
  • H. Bursztyn, O. Radko, Gauge equivalence of Dirac structures and symplectic groupoids, Ann. Inst. Fourier, 53 (2003) 309-337.
  • C. Camacho, A. Neto, Geometric theory of foliations, Birkhauser, Boston, Massachusetts, (1985).
  • A. Connes, Noncommutative geometry, Academic Press, San Diego, (1994).
  • J. Renault, A groupoid approach to C∗-algebras, Lecture Notes in Mathematics, Springer Verlag, Berlin, (1980).
  • A. Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc., 16 (1987) 101-104.
  • A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, 40 (1988) 705-727.
  • K. Mikami, A. Weinstein, Moments and reduction for symplectic groupoid actions, Publ. Rims Kyoto University, 24 (1988) 121-140.
  • K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Mathemat
  • ical Society, Lecture Note Series, Cambridge, no., 124 (1987).
  • E. Martinez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67 (2001) 295-320. Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran E-mail address: abbasi.makrani@gmail.com Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran E-mail address: gorbanali@azaruniv.ac.ir

Year 2014, Volume: 2 Issue: 2, 1 - 18, 01.12.2014

Abstract

References

  • H. Abbasi, GH. Haghighatdoost, Groupoid associated to a smooth manifold (preprint).
  • R. Brown, From groups to groupoids, a brief survey, Bull. London Math. Soc., 19 (1987) 113-134.
  • H. Bursztyn, O. Radko, Gauge equivalence of Dirac structures and symplectic groupoids, Ann. Inst. Fourier, 53 (2003) 309-337.
  • C. Camacho, A. Neto, Geometric theory of foliations, Birkhauser, Boston, Massachusetts, (1985).
  • A. Connes, Noncommutative geometry, Academic Press, San Diego, (1994).
  • J. Renault, A groupoid approach to C∗-algebras, Lecture Notes in Mathematics, Springer Verlag, Berlin, (1980).
  • A. Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc., 16 (1987) 101-104.
  • A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, 40 (1988) 705-727.
  • K. Mikami, A. Weinstein, Moments and reduction for symplectic groupoid actions, Publ. Rims Kyoto University, 24 (1988) 121-140.
  • K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Mathemat
  • ical Society, Lecture Note Series, Cambridge, no., 124 (1987).
  • E. Martinez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67 (2001) 295-320. Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran E-mail address: abbasi.makrani@gmail.com Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran E-mail address: gorbanali@azaruniv.ac.ir
There are 12 citations in total.

Details

Authors

H. Abbası This is me

GH.HAGHIGHATDOOST This is me

Submission Date April 4, 2015
Publication Date December 1, 2014
Published in Issue Year 2014 Volume: 2 Issue: 2
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.