BibTex RIS Cite

PHI -CONFORMALLY FLAT C−MANIFOLDS

Year 2013, Volume: 1 Issue: 1, 54 - 60, 01.06.2013

Abstract

In this paper, we have studied φ−conformally flat, φ−conharmonicallyflat and φ−projectively flat C−manifolds

References

  • K. Arslan, C. Murathan and C. Ozg¨ur, On φ−Conformally flat contact metric manifolds, Balkan J. Geom. Appl. (BJGA), 5 (2) (2000), 1–7.
  • K. Arslan, C. Murathan and C. Ozg¨ur, On contact manifolds satisfying certain curvature conditions, Proceedings of the Centennial ”G. Vranceanu” and the Annual Meeting of the Faculty of Mathematics (Bucharest, 2000). An. Univ. Bucure¸sti Mat. Inform., 49 (2) (2000), 17–26.
  • D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathe- matics, 203. Birkh¨auser Boston, Inc., Boston, MA, 2002.
  • D. E. Blair., Geometry of manifolds with structural group U (n)xO(s), J. Diff. Geom., 4(1970), 155-167. [5] D. E. Blair., On a generalization of the Hopf fibration, An. St. Univ. ”Al. I. Cuza”Iasi, 17(1971), 171-177. [6] D. E. Blair., G. D. Ludden and K. Yano, Differential geometric structures on principal torodial bundles,Trans. Am. Math. Soc., 181(1973), 175-184.
  • D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math. Springer– Verlag, Berlin–Heidelberg–New–York, 509 (1976).
  • J.L. Cabrerizo, L.M. Fernandez, M. Fernandez and G. Zhen, The structure of a class of K–contact manifolds, Acta Math. Hungar, 82 (4) (1999), 331–340.
  • J.L. Cabrerizo, L.M. Fernandez, M. Fernandez, The curvature tensor fields on f −manifolds with complemented frames, An. ¸st. Univ. ”Al. I. Cuza” Ia¸si Matematica, 36(1990), 151-162. [10] I. Mihai and R. Rosca, On Lorentzian P–Sasakian manifolds, Classical Analysis, World Scientific Publ, Singapore (1992), 155–169.
  • I. Sato, On a structure similar to almost contact structure, Tensor N.S, 30 (1976), 219–224. [12] I. Sato, On a structure similar to almost contact structure II, Tensor N.S, 31 (1977), 199–205. [13] H. Singh, Q. Khan, On special weakly symmetric Riemannian manifolds, Publ. Math. De- brecen, Hungary 58(2001), 523–536.
  • C. ¨Ozg¨ur, φ−conformally flat Lorentzian para-Sasakian manifolds, Radovi Mathematicki, 12(2003), 99-106. [15] Y. Ishii, On conharmonic transformations, Tensor N.S, 7 (1957), 73–80.
  • K. Yano, On a structure defined by a tensor field f of type (1, 1) satisfing f3+ f = 0 Tensor, 14(1963), 99-109. [17] K. Yano and M. Kon, Structures on Manifolds, Series in Pure Math, Vol 3, World Sci, 1984. [18] G. Zhen, On conformal symmetric K–contact manifolds, Chinese Quart. J. of Math, 7 (1992), 5–10.
  • G. Zhen, J.L. Cabrerizo, L.M. Fernandez and M. Fernandez, On ξ−conformally flat contact metric manifolds, Indian J. Pure Appl. Math, 28 (1997), 725–734.
  • Aksaray University, Faculty of Art and Sciences, Department of Mathematics, Ak- saray/TURKEY
  • E-mail address: materdalo@gmail.com
Year 2013, Volume: 1 Issue: 1, 54 - 60, 01.06.2013

Abstract

References

  • K. Arslan, C. Murathan and C. Ozg¨ur, On φ−Conformally flat contact metric manifolds, Balkan J. Geom. Appl. (BJGA), 5 (2) (2000), 1–7.
  • K. Arslan, C. Murathan and C. Ozg¨ur, On contact manifolds satisfying certain curvature conditions, Proceedings of the Centennial ”G. Vranceanu” and the Annual Meeting of the Faculty of Mathematics (Bucharest, 2000). An. Univ. Bucure¸sti Mat. Inform., 49 (2) (2000), 17–26.
  • D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathe- matics, 203. Birkh¨auser Boston, Inc., Boston, MA, 2002.
  • D. E. Blair., Geometry of manifolds with structural group U (n)xO(s), J. Diff. Geom., 4(1970), 155-167. [5] D. E. Blair., On a generalization of the Hopf fibration, An. St. Univ. ”Al. I. Cuza”Iasi, 17(1971), 171-177. [6] D. E. Blair., G. D. Ludden and K. Yano, Differential geometric structures on principal torodial bundles,Trans. Am. Math. Soc., 181(1973), 175-184.
  • D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math. Springer– Verlag, Berlin–Heidelberg–New–York, 509 (1976).
  • J.L. Cabrerizo, L.M. Fernandez, M. Fernandez and G. Zhen, The structure of a class of K–contact manifolds, Acta Math. Hungar, 82 (4) (1999), 331–340.
  • J.L. Cabrerizo, L.M. Fernandez, M. Fernandez, The curvature tensor fields on f −manifolds with complemented frames, An. ¸st. Univ. ”Al. I. Cuza” Ia¸si Matematica, 36(1990), 151-162. [10] I. Mihai and R. Rosca, On Lorentzian P–Sasakian manifolds, Classical Analysis, World Scientific Publ, Singapore (1992), 155–169.
  • I. Sato, On a structure similar to almost contact structure, Tensor N.S, 30 (1976), 219–224. [12] I. Sato, On a structure similar to almost contact structure II, Tensor N.S, 31 (1977), 199–205. [13] H. Singh, Q. Khan, On special weakly symmetric Riemannian manifolds, Publ. Math. De- brecen, Hungary 58(2001), 523–536.
  • C. ¨Ozg¨ur, φ−conformally flat Lorentzian para-Sasakian manifolds, Radovi Mathematicki, 12(2003), 99-106. [15] Y. Ishii, On conharmonic transformations, Tensor N.S, 7 (1957), 73–80.
  • K. Yano, On a structure defined by a tensor field f of type (1, 1) satisfing f3+ f = 0 Tensor, 14(1963), 99-109. [17] K. Yano and M. Kon, Structures on Manifolds, Series in Pure Math, Vol 3, World Sci, 1984. [18] G. Zhen, On conformal symmetric K–contact manifolds, Chinese Quart. J. of Math, 7 (1992), 5–10.
  • G. Zhen, J.L. Cabrerizo, L.M. Fernandez and M. Fernandez, On ξ−conformally flat contact metric manifolds, Indian J. Pure Appl. Math, 28 (1997), 725–734.
  • Aksaray University, Faculty of Art and Sciences, Department of Mathematics, Ak- saray/TURKEY
  • E-mail address: materdalo@gmail.com
There are 13 citations in total.

Details

Journal Section Articles
Authors

Erdal Özüsağlam This is me

Publication Date June 1, 2013
Submission Date April 4, 2015
Published in Issue Year 2013 Volume: 1 Issue: 1

Cite

APA Özüsağlam, E. (2013). PHI -CONFORMALLY FLAT C−MANIFOLDS. Konuralp Journal of Mathematics, 1(1), 54-60.
AMA Özüsağlam E. PHI -CONFORMALLY FLAT C−MANIFOLDS. Konuralp J. Math. April 2013;1(1):54-60.
Chicago Özüsağlam, Erdal. “PHI -CONFORMALLY FLAT C−MANIFOLDS”. Konuralp Journal of Mathematics 1, no. 1 (April 2013): 54-60.
EndNote Özüsağlam E (April 1, 2013) PHI -CONFORMALLY FLAT C−MANIFOLDS. Konuralp Journal of Mathematics 1 1 54–60.
IEEE E. Özüsağlam, “PHI -CONFORMALLY FLAT C−MANIFOLDS”, Konuralp J. Math., vol. 1, no. 1, pp. 54–60, 2013.
ISNAD Özüsağlam, Erdal. “PHI -CONFORMALLY FLAT C−MANIFOLDS”. Konuralp Journal of Mathematics 1/1 (April 2013), 54-60.
JAMA Özüsağlam E. PHI -CONFORMALLY FLAT C−MANIFOLDS. Konuralp J. Math. 2013;1:54–60.
MLA Özüsağlam, Erdal. “PHI -CONFORMALLY FLAT C−MANIFOLDS”. Konuralp Journal of Mathematics, vol. 1, no. 1, 2013, pp. 54-60.
Vancouver Özüsağlam E. PHI -CONFORMALLY FLAT C−MANIFOLDS. Konuralp J. Math. 2013;1(1):54-60.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.