BibTex RIS Cite
Year 2014, Volume: 2 Issue: 1, 24 - 35, 01.06.2014

Abstract

References

  • Aktan N., G¨org¨ul¨u A., ¨Oz¨usa˘glam E. and Ekici C., Conjugate Tangent Vectors and Asymp- totic Directions for Surfaces at a Constant Distance From Edge of Regression on a Surface, IJPAM, 33, No. 1 (2006), 127-133.
  • Aktan N., ¨Oz¨usa˘glam E. and G¨org¨ul¨u A., The Euler Theorem and Dupin Indicatrix for Surfaces at a Constant Distance from Edge of Regression on a Surface, International Journal of Applied Mathematics &Statistics, 14, No.S09 (2009), 37-43.
  • Bilici, M. and C¸ alı¸skan, M., On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space, International Mathematical Forum, 4, no.31, 1497-1509, (2009).
  • C¸ ¨oken A. C., Dupin Indicatrix for Pseudo-Euclidean Hypersurfaces in Pseudo-Euclidean vSpace Rn+1, Bull. Cal. Math. Soc., 89 (1997), 343-348.
  • C¸ ¨oken A. C., The Euler Theorem and Dupin indicatrix for Parallel Pseudo-Euclidean Hy- persurfaces in Pseudo-Euclidean Space in Semi-Euclidean Space En+1, Hadronic Journal ν
  • Supplement, 16, (2001), 151-162.
  • Duggal K. L., Bejancu A., Lightlike submanifolds of semi-Riemannian manifolds and it’s applications, Kluwer Dortrecth, 1996.
  • G¨org¨ul¨u A., C¸ ¨oken A. C., The Euler Theorem for Parallel Pseudo-Euclidean Hypersurfaces in Pseudo- Euclidean Space En+1, Jour Inst.Math. & Comp. Sci. (Math. Ser.), 6, No.2 (1993), 161-165.
  • G¨org¨ul¨u A., C¸ ¨oken A. C., The Dupin indicatrix for Parallel Pseudo-Euclidean Hypersurfaces in Pseudo-Euclidean Space in Semi-Euclidean Space En+1, Journ. Inst. Math. and Comp. 1
  • Sci. (Math Series), 7, No.3 (1994), 221-225.
  • Hacısaliho˘glu H. H., Diferensiyel Geometri, ˙In¨on¨u ¨Universitesi Fen Edeb. Fak. Yayınları, Mat. No.2 895s., 1983.
  • Kazaz, M., U˘gurlu, H. H., Onder, M.and Kahraman M., Mannheim partner D-curves in Minkowski 3-space E3, arXiv: 1003.2043v3 [math.DG].
  • 1, arXiv: 1003.2043v3 [math.DG].
  • Kazaz M., ¨Onder M. , Mannheim offsets of timelike ruled surfaces in Minkowski 3-space arXiv:0906.2077v5 [math.DG].
  • Kazaz M., U˘gurlu H. H. , ¨Onder M., Mannheim offsets of spacelike ruled surfaces in Minkowski 3-space, arXiv:0906.4660v3 [math.DG].
  • Kılı¸c A. and Hacısaliho˘glu H. H., Euler’s Theorem and the Dupin Representation for Parallel Hypersurfaces, Journal of Sci. and Arts of Gazi Univ. Ankara, 1, No.1 (1984), 21-26.
  • O’Neill B., Semi-Riemannian Geometry With Applications To Relativity, Academic Press, New York, London,1983.
  • Sa˘glam D., Boyacıo˘glu Kalkan ¨O , Surfaces at a constant distance from edge of regression on a surface in E3, Differential Geometry-Dynamical Systems, 12, (2010), 187-200.
  • Sa˘glam D., Kalkan Boyacıo˘glu ¨O., The Euler Theorem and Dupin Indicatrix for Surfaces at a Constant Distance from Edge of Regression on a Surface in E, Matematicki Vesnik, 65, No.2 (2013), 242–249.
  • Tarakci ¨O., Hacısaliho˘glu H. H. , Surfaces at a constant distance from edge of regression on a surface, Applied Mathematics and Computation, 155, (2004), 81-93.
  • 1Gazi University, Polatlı Science and Art Faculty, Department of Mathematics, Polatlı-TURKEY
  • E-mail address: deryasaglam@gazi.edu.tr
  • 2Afyon Vocational School, Afyon Kocatepe University, Afyon - Turkey
  • E-mail address: bozgur@aku.edu.tr

CONJUGATE TANGENT VECTORS AND ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E(1,3)

Year 2014, Volume: 2 Issue: 1, 24 - 35, 01.06.2014

Abstract

In this paper we give conjugate tangent vectors and asymptoticdirections for surfaces at a constant distance from edge of regression on a1surface in E3.3

References

  • Aktan N., G¨org¨ul¨u A., ¨Oz¨usa˘glam E. and Ekici C., Conjugate Tangent Vectors and Asymp- totic Directions for Surfaces at a Constant Distance From Edge of Regression on a Surface, IJPAM, 33, No. 1 (2006), 127-133.
  • Aktan N., ¨Oz¨usa˘glam E. and G¨org¨ul¨u A., The Euler Theorem and Dupin Indicatrix for Surfaces at a Constant Distance from Edge of Regression on a Surface, International Journal of Applied Mathematics &Statistics, 14, No.S09 (2009), 37-43.
  • Bilici, M. and C¸ alı¸skan, M., On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space, International Mathematical Forum, 4, no.31, 1497-1509, (2009).
  • C¸ ¨oken A. C., Dupin Indicatrix for Pseudo-Euclidean Hypersurfaces in Pseudo-Euclidean vSpace Rn+1, Bull. Cal. Math. Soc., 89 (1997), 343-348.
  • C¸ ¨oken A. C., The Euler Theorem and Dupin indicatrix for Parallel Pseudo-Euclidean Hy- persurfaces in Pseudo-Euclidean Space in Semi-Euclidean Space En+1, Hadronic Journal ν
  • Supplement, 16, (2001), 151-162.
  • Duggal K. L., Bejancu A., Lightlike submanifolds of semi-Riemannian manifolds and it’s applications, Kluwer Dortrecth, 1996.
  • G¨org¨ul¨u A., C¸ ¨oken A. C., The Euler Theorem for Parallel Pseudo-Euclidean Hypersurfaces in Pseudo- Euclidean Space En+1, Jour Inst.Math. & Comp. Sci. (Math. Ser.), 6, No.2 (1993), 161-165.
  • G¨org¨ul¨u A., C¸ ¨oken A. C., The Dupin indicatrix for Parallel Pseudo-Euclidean Hypersurfaces in Pseudo-Euclidean Space in Semi-Euclidean Space En+1, Journ. Inst. Math. and Comp. 1
  • Sci. (Math Series), 7, No.3 (1994), 221-225.
  • Hacısaliho˘glu H. H., Diferensiyel Geometri, ˙In¨on¨u ¨Universitesi Fen Edeb. Fak. Yayınları, Mat. No.2 895s., 1983.
  • Kazaz, M., U˘gurlu, H. H., Onder, M.and Kahraman M., Mannheim partner D-curves in Minkowski 3-space E3, arXiv: 1003.2043v3 [math.DG].
  • 1, arXiv: 1003.2043v3 [math.DG].
  • Kazaz M., ¨Onder M. , Mannheim offsets of timelike ruled surfaces in Minkowski 3-space arXiv:0906.2077v5 [math.DG].
  • Kazaz M., U˘gurlu H. H. , ¨Onder M., Mannheim offsets of spacelike ruled surfaces in Minkowski 3-space, arXiv:0906.4660v3 [math.DG].
  • Kılı¸c A. and Hacısaliho˘glu H. H., Euler’s Theorem and the Dupin Representation for Parallel Hypersurfaces, Journal of Sci. and Arts of Gazi Univ. Ankara, 1, No.1 (1984), 21-26.
  • O’Neill B., Semi-Riemannian Geometry With Applications To Relativity, Academic Press, New York, London,1983.
  • Sa˘glam D., Boyacıo˘glu Kalkan ¨O , Surfaces at a constant distance from edge of regression on a surface in E3, Differential Geometry-Dynamical Systems, 12, (2010), 187-200.
  • Sa˘glam D., Kalkan Boyacıo˘glu ¨O., The Euler Theorem and Dupin Indicatrix for Surfaces at a Constant Distance from Edge of Regression on a Surface in E, Matematicki Vesnik, 65, No.2 (2013), 242–249.
  • Tarakci ¨O., Hacısaliho˘glu H. H. , Surfaces at a constant distance from edge of regression on a surface, Applied Mathematics and Computation, 155, (2004), 81-93.
  • 1Gazi University, Polatlı Science and Art Faculty, Department of Mathematics, Polatlı-TURKEY
  • E-mail address: deryasaglam@gazi.edu.tr
  • 2Afyon Vocational School, Afyon Kocatepe University, Afyon - Turkey
  • E-mail address: bozgur@aku.edu.tr
There are 24 citations in total.

Details

Journal Section Articles
Authors

DERYA Sağlam This is me

Özgürboyacioğlu Kalkan This is me

Publication Date June 1, 2014
Submission Date April 4, 2015
Published in Issue Year 2014 Volume: 2 Issue: 1

Cite

APA Sağlam, D., & Kalkan, Ö. (2014). CONJUGATE TANGENT VECTORS AND ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E(1,3). Konuralp Journal of Mathematics, 2(1), 24-35.
AMA Sağlam D, Kalkan Ö. CONJUGATE TANGENT VECTORS AND ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E(1,3). Konuralp J. Math. April 2014;2(1):24-35.
Chicago Sağlam, DERYA, and Özgürboyacioğlu Kalkan. “CONJUGATE TANGENT VECTORS AND ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E(1,3)”. Konuralp Journal of Mathematics 2, no. 1 (April 2014): 24-35.
EndNote Sağlam D, Kalkan Ö (April 1, 2014) CONJUGATE TANGENT VECTORS AND ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E(1,3). Konuralp Journal of Mathematics 2 1 24–35.
IEEE D. Sağlam and Ö. Kalkan, “CONJUGATE TANGENT VECTORS AND ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E(1,3)”, Konuralp J. Math., vol. 2, no. 1, pp. 24–35, 2014.
ISNAD Sağlam, DERYA - Kalkan, Özgürboyacioğlu. “CONJUGATE TANGENT VECTORS AND ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E(1,3)”. Konuralp Journal of Mathematics 2/1 (April 2014), 24-35.
JAMA Sağlam D, Kalkan Ö. CONJUGATE TANGENT VECTORS AND ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E(1,3). Konuralp J. Math. 2014;2:24–35.
MLA Sağlam, DERYA and Özgürboyacioğlu Kalkan. “CONJUGATE TANGENT VECTORS AND ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E(1,3)”. Konuralp Journal of Mathematics, vol. 2, no. 1, 2014, pp. 24-35.
Vancouver Sağlam D, Kalkan Ö. CONJUGATE TANGENT VECTORS AND ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E(1,3). Konuralp J. Math. 2014;2(1):24-35.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.