Research Article
BibTex RIS Cite

OSTROWSKI TYPE INEQUALITIES FOR HARMONICALLY s-CONVEX FUNCTIONS

Year 2015, Volume: 3 Issue: 1, 63 - 74, 01.04.2015

Abstract

The author introduces the concept of harmonically s-convex functions and establishes some Ostrowski type inequalities and a variant of Hermite- Hadamard inequality for these classes of functions.

References

  • [1] M. Abramowitz and I.A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1965.
  • [2] M. Alomari, M. Darus, S. S. Dragomir, and P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett. 23 (1) (2010), 1071-1076.
  • [3] M. W. Alomari, M. Darus, and U. S. Kirmaci, Some inequalities of Hermite-Hadamard type for s-convex functions, Acta Math. Sci. B31, no.4 (2011), 1643{1652.
  • [4] M. Avci, H. Kavurmaci and M. Emin  Ozdemir, New inequalities of Hermite{Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput. 217 (2011) 5171{5176.
  • [5] S.S. Dragomir, S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math. 32 (4) (1999), 687{696.
  • [6] S. Hussain, M. I. Bhatti, and M. Iqbal, Hadamard-type inequalities for s-convex functions I, J. Math., Punjab Univ. 41 (2009), 51{60.
  • [7] H. Hudzik , L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100{111.
  • [8] İ. İşcan, New estimates on generalization of some integral inequalities for s-convex functions and their applications, Int. J. Pure Appl. Math. 86, No.4 (2013), 727-746.
  • [9] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics, Vol: 43 (6) (2014), 935-942.
  • [10] İ. İşcan, Generalization of different type integral inequalities for s-convex functions via fractional integrals, Applicable Analysis, vol. 93, issue 9 (2014), 1846-1862.
  • [11] U. S. Kirmaci, M. Klaricic Bakula, M.E.  Ozdemir, and J. Pecaric, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193, no.1 (2007), 26{35.
  • [12] Z. Liu, A note on Ostrowski type inequalities related to some s-convex functions in the second sense, Bull. Korean Math. Soc. 49 (4) (2012), 775-785. Available online at http://dx.doi.org/10.4134/BKMS.2012.49.4.775.
  • [13] A. Ostrowski, Uber die Absolutabweichung einer di erentiebaren funktion von ihren integralmittelwert, Comment. Math. Helv. 10 (1938) 226{227.
Year 2015, Volume: 3 Issue: 1, 63 - 74, 01.04.2015

Abstract

References

  • [1] M. Abramowitz and I.A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1965.
  • [2] M. Alomari, M. Darus, S. S. Dragomir, and P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett. 23 (1) (2010), 1071-1076.
  • [3] M. W. Alomari, M. Darus, and U. S. Kirmaci, Some inequalities of Hermite-Hadamard type for s-convex functions, Acta Math. Sci. B31, no.4 (2011), 1643{1652.
  • [4] M. Avci, H. Kavurmaci and M. Emin  Ozdemir, New inequalities of Hermite{Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput. 217 (2011) 5171{5176.
  • [5] S.S. Dragomir, S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math. 32 (4) (1999), 687{696.
  • [6] S. Hussain, M. I. Bhatti, and M. Iqbal, Hadamard-type inequalities for s-convex functions I, J. Math., Punjab Univ. 41 (2009), 51{60.
  • [7] H. Hudzik , L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100{111.
  • [8] İ. İşcan, New estimates on generalization of some integral inequalities for s-convex functions and their applications, Int. J. Pure Appl. Math. 86, No.4 (2013), 727-746.
  • [9] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics, Vol: 43 (6) (2014), 935-942.
  • [10] İ. İşcan, Generalization of different type integral inequalities for s-convex functions via fractional integrals, Applicable Analysis, vol. 93, issue 9 (2014), 1846-1862.
  • [11] U. S. Kirmaci, M. Klaricic Bakula, M.E.  Ozdemir, and J. Pecaric, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193, no.1 (2007), 26{35.
  • [12] Z. Liu, A note on Ostrowski type inequalities related to some s-convex functions in the second sense, Bull. Korean Math. Soc. 49 (4) (2012), 775-785. Available online at http://dx.doi.org/10.4134/BKMS.2012.49.4.775.
  • [13] A. Ostrowski, Uber die Absolutabweichung einer di erentiebaren funktion von ihren integralmittelwert, Comment. Math. Helv. 10 (1938) 226{227.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İmdat İşcan

Publication Date April 1, 2015
Submission Date July 10, 2014
Published in Issue Year 2015 Volume: 3 Issue: 1

Cite

APA İşcan, İ. (2015). OSTROWSKI TYPE INEQUALITIES FOR HARMONICALLY s-CONVEX FUNCTIONS. Konuralp Journal of Mathematics, 3(1), 63-74.
AMA İşcan İ. OSTROWSKI TYPE INEQUALITIES FOR HARMONICALLY s-CONVEX FUNCTIONS. Konuralp J. Math. April 2015;3(1):63-74.
Chicago İşcan, İmdat. “OSTROWSKI TYPE INEQUALITIES FOR HARMONICALLY S-CONVEX FUNCTIONS”. Konuralp Journal of Mathematics 3, no. 1 (April 2015): 63-74.
EndNote İşcan İ (April 1, 2015) OSTROWSKI TYPE INEQUALITIES FOR HARMONICALLY s-CONVEX FUNCTIONS. Konuralp Journal of Mathematics 3 1 63–74.
IEEE İ. İşcan, “OSTROWSKI TYPE INEQUALITIES FOR HARMONICALLY s-CONVEX FUNCTIONS”, Konuralp J. Math., vol. 3, no. 1, pp. 63–74, 2015.
ISNAD İşcan, İmdat. “OSTROWSKI TYPE INEQUALITIES FOR HARMONICALLY S-CONVEX FUNCTIONS”. Konuralp Journal of Mathematics 3/1 (April 2015), 63-74.
JAMA İşcan İ. OSTROWSKI TYPE INEQUALITIES FOR HARMONICALLY s-CONVEX FUNCTIONS. Konuralp J. Math. 2015;3:63–74.
MLA İşcan, İmdat. “OSTROWSKI TYPE INEQUALITIES FOR HARMONICALLY S-CONVEX FUNCTIONS”. Konuralp Journal of Mathematics, vol. 3, no. 1, 2015, pp. 63-74.
Vancouver İşcan İ. OSTROWSKI TYPE INEQUALITIES FOR HARMONICALLY s-CONVEX FUNCTIONS. Konuralp J. Math. 2015;3(1):63-74.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.