Research Article
BibTex RIS Cite

ON THE DETERMINATION OF A DEVELOPABLE SPHERICAL ORTHOTOMIC TIMELIKE RULED SURFACE

Year 2015, Volume: 3 Issue: 1, 75 - 83, 01.04.2015

Abstract

In this paper, a method for determination of developable spherical orthotomic ruled surfaces generated by a spacelike curve on dual hyperbolic unit sphere is given by using dual vector calculus in R31 . We show that dual vectorial expression of a developable spherical orthotomic timelike ruled surface can be obtained from coordinates and the rst derivatives of the base curve. The paper concludes with an example related to this method.

References

  • [1] N. Alamo, C. Criado, Generalized Antiorthotomics and their Singularities, Inverse Problems, 18(3)(2002), 881-889.
  • [2] W. Blaschke, Vorlesungen Uber Di erential Geometry I., Verlag von Julieus Springer in Berlin (1930) pp.89.
  • [3] J. W. Bruce, On Singularities, Envelopes and Elementary Di erential Geometry, Math. Proc. Cambridge Philos. Soc., 89 (1) (1981) 43-48.
  • [4] J. W. Bruce, P. J. Giblin, Curves and Singularities. A Geometrical Introduction to Singularity Theory, Second Edition, University Press, Cambridge, (1992).
  • [5] J. W. Bruce, P. J. Giblin, One-parameter Families of Caustics by Re exion in the Plane, Quart. J. Math. Oxford Ser., (2), 35(139) (1984) 243-251.
  • [6] C. Georgiou, T. Hasanis, D. Koutrou otis, On the Caustic of a Convex Mirror, Geom. Ded- icata, 28(2)(1988), 153-169.
  • [7] C. G. Gibson, Elementary Geometry of Di erentiable Curves, Cambridge University Press, May (2011).
  • [8] J. Hoschek, Smoothing of curves and surfaces. Computer Aided Geometric Design, Vol. 2, No. 1-3 (1985), special issue, 97-105.
  • [9]  O. G. Yldz, H. H. Hacsaligoglu, Study Map of Orthotomic of a Circle, International J. Math. Combin., Vol.4 (2014), 07-17.
  • [10]  O. G. Yldz, S.  O. Karakus, H. H. Hacsaligoglu,On the determination of a developable spherical orthotomic ruled surface, Bull. Math. Sci., (2014) Doi: 10.1007/s13373-014-0063-5.
  • [11]  O. Kose, A Method of the Determination of a Developable Ruled Surface, Mechanism and Machine Theory, 34 (1999), 1187-1193.
  • [12] C.Ekici, E. Ozusaglam, On the Method of Determination of a Developable Timelike Ruled Surface, Kuwait Journal of Science and Engineering, Vol:39(1A), 19-41, 2012.
  • [13] C.Y. Li, R.H. Wang, C.G. Zhu, An approach for designing a developable surface through a given line of curvature, Computer Aided Design, 45 (2013), 621-627.
  • [14] J.M. McCarthy, On The Scalar and Dual Formulations of the Curvature Theory of Line Trajectories, ASME Journal of Mechanisms, Transmissions and Automation in Design, (1987), 109/101.
  • [15] E. Study, Geometrie der Dynamen, Leibzig, (1903).
  • [16] H. H. Ugurlu, A. C aliskan, The Study mapping for directed spacelike and timelike lines in Minkowski 3-space, Mathematical and Computational Applications, Vol. 1, No:2 (1996), 142-148.
  • [17] G. R. Veldkamp, On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics, Mech. Mach. Theory, 11 (1976), no. 2, 141-156.
  • [18] J.F. Xiong, Spherical Orthotomic and Spherical Antiorthotomic, Acta Mathematica Sinica, 23 (2007), Issue 9, pp 1673-1682.
  • [19] Y.Yayl, A. C alskan, H.H. Ugurlu, The E. Study Maps of Circles on Dual Hyperbolic and Lorentzian Unit Spheres H20 and S21 ; Mathematical Proceedings of the Royal Irish Academy, 102A(2002), 1, 37-47.
Year 2015, Volume: 3 Issue: 1, 75 - 83, 01.04.2015

Abstract

References

  • [1] N. Alamo, C. Criado, Generalized Antiorthotomics and their Singularities, Inverse Problems, 18(3)(2002), 881-889.
  • [2] W. Blaschke, Vorlesungen Uber Di erential Geometry I., Verlag von Julieus Springer in Berlin (1930) pp.89.
  • [3] J. W. Bruce, On Singularities, Envelopes and Elementary Di erential Geometry, Math. Proc. Cambridge Philos. Soc., 89 (1) (1981) 43-48.
  • [4] J. W. Bruce, P. J. Giblin, Curves and Singularities. A Geometrical Introduction to Singularity Theory, Second Edition, University Press, Cambridge, (1992).
  • [5] J. W. Bruce, P. J. Giblin, One-parameter Families of Caustics by Re exion in the Plane, Quart. J. Math. Oxford Ser., (2), 35(139) (1984) 243-251.
  • [6] C. Georgiou, T. Hasanis, D. Koutrou otis, On the Caustic of a Convex Mirror, Geom. Ded- icata, 28(2)(1988), 153-169.
  • [7] C. G. Gibson, Elementary Geometry of Di erentiable Curves, Cambridge University Press, May (2011).
  • [8] J. Hoschek, Smoothing of curves and surfaces. Computer Aided Geometric Design, Vol. 2, No. 1-3 (1985), special issue, 97-105.
  • [9]  O. G. Yldz, H. H. Hacsaligoglu, Study Map of Orthotomic of a Circle, International J. Math. Combin., Vol.4 (2014), 07-17.
  • [10]  O. G. Yldz, S.  O. Karakus, H. H. Hacsaligoglu,On the determination of a developable spherical orthotomic ruled surface, Bull. Math. Sci., (2014) Doi: 10.1007/s13373-014-0063-5.
  • [11]  O. Kose, A Method of the Determination of a Developable Ruled Surface, Mechanism and Machine Theory, 34 (1999), 1187-1193.
  • [12] C.Ekici, E. Ozusaglam, On the Method of Determination of a Developable Timelike Ruled Surface, Kuwait Journal of Science and Engineering, Vol:39(1A), 19-41, 2012.
  • [13] C.Y. Li, R.H. Wang, C.G. Zhu, An approach for designing a developable surface through a given line of curvature, Computer Aided Design, 45 (2013), 621-627.
  • [14] J.M. McCarthy, On The Scalar and Dual Formulations of the Curvature Theory of Line Trajectories, ASME Journal of Mechanisms, Transmissions and Automation in Design, (1987), 109/101.
  • [15] E. Study, Geometrie der Dynamen, Leibzig, (1903).
  • [16] H. H. Ugurlu, A. C aliskan, The Study mapping for directed spacelike and timelike lines in Minkowski 3-space, Mathematical and Computational Applications, Vol. 1, No:2 (1996), 142-148.
  • [17] G. R. Veldkamp, On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics, Mech. Mach. Theory, 11 (1976), no. 2, 141-156.
  • [18] J.F. Xiong, Spherical Orthotomic and Spherical Antiorthotomic, Acta Mathematica Sinica, 23 (2007), Issue 9, pp 1673-1682.
  • [19] Y.Yayl, A. C alskan, H.H. Ugurlu, The E. Study Maps of Circles on Dual Hyperbolic and Lorentzian Unit Spheres H20 and S21 ; Mathematical Proceedings of the Royal Irish Academy, 102A(2002), 1, 37-47.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ö. Gökmen Yıldız

Siddika Ö. Karakuş

H. Hilmi Hacısalihoğlu This is me

Publication Date April 1, 2015
Submission Date July 10, 2014
Published in Issue Year 2015 Volume: 3 Issue: 1

Cite

APA Yıldız, Ö. G., Ö. Karakuş, S., & Hacısalihoğlu, H. H. (2015). ON THE DETERMINATION OF A DEVELOPABLE SPHERICAL ORTHOTOMIC TIMELIKE RULED SURFACE. Konuralp Journal of Mathematics, 3(1), 75-83.
AMA Yıldız ÖG, Ö. Karakuş S, Hacısalihoğlu HH. ON THE DETERMINATION OF A DEVELOPABLE SPHERICAL ORTHOTOMIC TIMELIKE RULED SURFACE. Konuralp J. Math. April 2015;3(1):75-83.
Chicago Yıldız, Ö. Gökmen, Siddika Ö. Karakuş, and H. Hilmi Hacısalihoğlu. “ON THE DETERMINATION OF A DEVELOPABLE SPHERICAL ORTHOTOMIC TIMELIKE RULED SURFACE”. Konuralp Journal of Mathematics 3, no. 1 (April 2015): 75-83.
EndNote Yıldız ÖG, Ö. Karakuş S, Hacısalihoğlu HH (April 1, 2015) ON THE DETERMINATION OF A DEVELOPABLE SPHERICAL ORTHOTOMIC TIMELIKE RULED SURFACE. Konuralp Journal of Mathematics 3 1 75–83.
IEEE Ö. G. Yıldız, S. Ö. Karakuş, and H. H. Hacısalihoğlu, “ON THE DETERMINATION OF A DEVELOPABLE SPHERICAL ORTHOTOMIC TIMELIKE RULED SURFACE”, Konuralp J. Math., vol. 3, no. 1, pp. 75–83, 2015.
ISNAD Yıldız, Ö. Gökmen et al. “ON THE DETERMINATION OF A DEVELOPABLE SPHERICAL ORTHOTOMIC TIMELIKE RULED SURFACE”. Konuralp Journal of Mathematics 3/1 (April 2015), 75-83.
JAMA Yıldız ÖG, Ö. Karakuş S, Hacısalihoğlu HH. ON THE DETERMINATION OF A DEVELOPABLE SPHERICAL ORTHOTOMIC TIMELIKE RULED SURFACE. Konuralp J. Math. 2015;3:75–83.
MLA Yıldız, Ö. Gökmen et al. “ON THE DETERMINATION OF A DEVELOPABLE SPHERICAL ORTHOTOMIC TIMELIKE RULED SURFACE”. Konuralp Journal of Mathematics, vol. 3, no. 1, 2015, pp. 75-83.
Vancouver Yıldız ÖG, Ö. Karakuş S, Hacısalihoğlu HH. ON THE DETERMINATION OF A DEVELOPABLE SPHERICAL ORTHOTOMIC TIMELIKE RULED SURFACE. Konuralp J. Math. 2015;3(1):75-83.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.