A DIFFERENT LOOK FOR PARANORMED RIESZ SEQUENCE SPACE DERIVED BY FIBONACCI MATRIX
Year 2015,
Volume: 3 Issue: 2, 62 - 76, 01.10.2015
Murat Candan
,
Gülsen Kılınç
Abstract
This paper presents the generalized Riesz sequence space rq( b Fp u ) which is formed all sequences whose Rqu b F-transforms are in the space `(p), where b F is a Fibonacci matrix. - - and -duals of the newly described sequence space have been given in addition to some topological properties of its. Also, it has been established the basis of rq( b Fp u ). Finally, we have been described a matrix class on the sequence space. Results obtained are more general and more comprehensive than presented up to now.
References
- [1] B. Altay, On the space of psummable dierence sequences of order m, (1 p < 1), Stud. Sci. Math. Hungar., 43(4)(2006), 387{402.
- [2] B. Altay, F. Basar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 26(2002), 701{715.
- [3] B. Altay, F. Basar, Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl., 319(2)(2006), 494{508.
- [4] B. Altay, F. Basar, Generalization of the sequence space `(p) derived by weighted mean, J. Math. Anal. Appl., 330(2007), 174{185.
- [5] B. Altay, F. Basar, The matrix domain and the ne spectrum of the dierence operator on the sequence space `p, (0 < p < 1), Commun. Math. Anal., 2(2)(2007), 1{11.
- [6] B. Altay, F. Basar, On the ne spectrum of the generalized dierence operator B(r; s) over the sequence c0 and c, Int. J. Math. Sci., 18(2008), 3005{3013.
- [7] B. Altay, F. Basar, M. Mursaleen, On the Euler sequence spaces which include the spaces `p and `1 I, Inform. Sci., 176(10)(2006), 1450{1462.
- [8] C. Aydn, F. Basar, Some new sequence spaces which include the spaces `p and `1, Demonstratio Math., 38(3)(2005), 641-656.
- [9] C. Aydn, F. Basar, Some generalizations of the sequence spaces arp, Iran J. Sci. Technol. Trans. A. Sci., 30A(2)(2006), 175{190.
- [10] F. Basar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, xi+405 pp., _Istanbul, (2012), ISB:978-1-60805-252-3.
- [11] F. Basar, B. Altay, On the space of sequences of pbounded variation and related matrix mappings, Ukrainian Math.J., 55(1)(2003), 136{147.
- [12] F. Basar, M. Kirisci, Almost convergence and generalized dierence matrix, Comput. Math. Appl., 61(3) (2011), 602{611.
- [13] M. Basarr, Paranormed Cesaro dierence sequence space and related matrix transformation, Doga Tr. J. Math., 15(1991), 14{19.
- [14] M. Basarr, On the generalized Riesz B-dierence sequence spaces, Filomat., 24(4)(2010), 35{52.
- [15] M. Basarr, F. Basar, E. E. Kara, On the Fibonacci Dierence Null and Convergent Sequences, arXiv:1309.0150.
- [16] M. Basarr, E. E. Kara, On some dierence sequence spaces of weighted means and compact operators, Ann. Funct. Anal., 2(2)(2011), 116{131.
- [17] M. Basarr, E. E. Kara, On compact operators on the Riesz Bmdierence sequence space, Iran J. Sci. Technol. Trans., 35A(4)(2011), 279{285.
- [18] M. Basarr, E. E. Kara, On compact operators on the Riesz Bmdierence sequence space-II, Iran J. Sci. Technol. Trans., 36A(3)(2012), 371{376.
- [19] M. Basarr, E. E. Kara, On the Bdierence sequence space derived by generalized weighted mean and compact operators, J. Math. Anal. Appl., 391(2012), 67{81.
- [20] M. Basarr, E. E. Kara, On the mth order dierence sequence space of generalized weighted mean and compact operator, Acta. Math. Sci., 33B(3)(2013), 1{18.
- [21] M. Basarr, M. Kaykc, On the generalized BthRiesz dierence sequence space and betaproperty, J. Inequal. Appl., ID 385029, (2009), 18pp.
- [22] M. Basarr, M. Ozturk, On the Riesz diference sequence space, Rend. Circ. Mat. Palermo., 57(2008), 377{389.
- [23] M. Basarr, M. Ozturk, On some Generalized Bmdierence Riesz Sequence Spaces and Uniform Opial Property, J. Inequal. Appl., ID 485730 (2011), 17 pp.
- [24] M. Candan, Some new sequence spaces dened by a modulus function and an innite matrix in a seminormed space, J. Math. Anal., 3(2) (2012), 1{9.
- [25] M. Candan, Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl., 281(2012), 15 pp.
- [26] M. Candan, Almost convergence and double sequential band matrix, Acta. Math. Sci., 34B(2)(2014), 354{366.
- [27] M. Candan, A new sequence space isomorphic to the space `(p) and compact operators, J. Math. Comput. Sci., 4, No: 2(2014), 306{334.
- [28] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Dierence Edu., (2014)163, 18 pp.
- [29] M. Candan, Some new sequence spaces derived from the spaces of bounded, convergent and null sequences, Int. J. Mod. Math. Sci., 12(2)(2014), 74-87.
- [30] M. Candan, Vector-Valued FK-spaces dened by a modulus function and an innite matrix, Thai J. Math., 12(1)(2014),155-165.
- [31] M. Candan, A new aproach on the spaces of generalized Fibonacci dierence null and convergent sequences, Math. terna., 1(5)(2015), 191{210.
- [32] M. Candan, A. Gunes, Paranormed sequence space of non-absolute type founded using generalized dierence matrix, Proc. Natl. Acad. Sci., India Sect. A Phys. Sci., 85(2)(2015), 269{276.
- [33] M. Candan, E. E. Kara, A study on topological and geometrical characteristics of new Banach sequence spaces, Gulf J. of Math., 3(4)(2015), 67-84.
- [34] M. Candan, K. Kayaduman, Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core, Brithish J. Math. Comput. Sci., 7(2)(2015), 150{167.
- [35] M. Candan, _I. Solak, On some Dierence Sequence Spaces Generated by Innite Matrices, Int. J. Pure Appl. Math., 25(1)(2005), 79{85.
- [36] M. Candan, _I. Solak, On New Dierence Sequence Spaces Generated by Innite Matrices, Int. J. Sci. and Tecnology., 1(1)(2006), 15{17.
- [37] B. Choudhary, S. K Mishra, On Kothe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 245(1993), 291{301.
- [38] R. C olak, M. Et, Malkowsky E, Some Topics of Sequence Spaces, Lecture Notes in Mathematics, Frat Univ, Elazg, Turkey,(2004), pp. 1{63, Frat Univ, Press, ISBN: 975-394-038-6.
- [39] R. C olak, M. Et, On some generalized dierence sequence spaces and related matrix transformations, Hokkaido Math. J., 26(3)(1997), 483{492.
- [40] S. Demiriz, C. C akan, Some topolojical and geometrical properties of a new dierence sequence space, Abstr. Appl. Anal., doi:10.1155/2011/213878, 14 pp.
- [41] M. Et, Generalized Cesaro dierence sequence spaces of non-absolute type involving lacunary sequence spaces, Appl. Math. Comput., 219(17)(2013), 9372{9376.
- [42] M. Et, M. Isk, On pa-dual spaces of generalized dierence sequence spaces, Appl. Math. Lett., 25(10)(2012), 1486{1489.
- [43] A. H. Ganie, N. A. Sheikh, New type of paranormed sequence space of non-absolute type and a matrix transformation, Int, J of Mod, Math, Sci., 8(2)(2013), 196{211.
- [44] K. Goswin, G. Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180(1993), 223{238.
- [45] C. G. Lascarides, I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Cambridge Philos. Soc., 68(1970), 99{104.
- [46] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 38(2013).
- [47] E. E. Kara, M. Basarr, M. Mursaleen, Compact operators on the Fibonacci dierence sequence spaces lp( b F) and l1( b F), 1st International Eurasian Conf. on Math.Sci.and Appl. Prishtine-Kosovo, (2012), September 3-7.
- [48] E. E. Kara, M. Ozturk, M. Basarr, Some topological and geometric properties of generalized Euler sequence spaces, Math., Slovaca, 60(3)(2010), 385{398.
- [49] H. Kzmaz, On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 169{176.
- [50] M. Kirisci, Almost convergence and generalized weighted mean I, AIP Conf. Proc. vol, 1470(2012), pp. 191{194.
- [51] M. Kirisci, On the spaces of Euler almost null and Euler almost convergent sequences, Commun. Fac. Sci. Univ., Ankara, 2(2013), 85{100.
- [52] M. Kirisci, Almost convergence and generalized weighted mean II, J. Inequal. Appl., ID 193,(2014), 13pp.
- [53] M. Kirisci, F. Basar, Some new sequence spaces derived by the domain of generalized dierence matrix, Comput. Math. Appl., 60(5)(2010), 1299{1309.
- [54] S. Konca, M. Basarr, Generalized dierence sequence spaces associated with a multiplier sequence on a real nnormed space, J. Inequal. Appl., ID 335(2013), 12 pp.
- [55] S. Konca, M. Basarr, On some spaces of almost lacunary convergent sequences derived by
Riesz mean and weighted almost lacunary statistical convergence in a real nnormedspace,
J, Inequal. Appl., ID 81(2014), 11 pp.
- [56] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math., Oxford, 18(2)(1967),
345{355.
Year 2015,
Volume: 3 Issue: 2, 62 - 76, 01.10.2015
Murat Candan
,
Gülsen Kılınç
References
- [1] B. Altay, On the space of psummable dierence sequences of order m, (1 p < 1), Stud. Sci. Math. Hungar., 43(4)(2006), 387{402.
- [2] B. Altay, F. Basar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 26(2002), 701{715.
- [3] B. Altay, F. Basar, Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl., 319(2)(2006), 494{508.
- [4] B. Altay, F. Basar, Generalization of the sequence space `(p) derived by weighted mean, J. Math. Anal. Appl., 330(2007), 174{185.
- [5] B. Altay, F. Basar, The matrix domain and the ne spectrum of the dierence operator on the sequence space `p, (0 < p < 1), Commun. Math. Anal., 2(2)(2007), 1{11.
- [6] B. Altay, F. Basar, On the ne spectrum of the generalized dierence operator B(r; s) over the sequence c0 and c, Int. J. Math. Sci., 18(2008), 3005{3013.
- [7] B. Altay, F. Basar, M. Mursaleen, On the Euler sequence spaces which include the spaces `p and `1 I, Inform. Sci., 176(10)(2006), 1450{1462.
- [8] C. Aydn, F. Basar, Some new sequence spaces which include the spaces `p and `1, Demonstratio Math., 38(3)(2005), 641-656.
- [9] C. Aydn, F. Basar, Some generalizations of the sequence spaces arp, Iran J. Sci. Technol. Trans. A. Sci., 30A(2)(2006), 175{190.
- [10] F. Basar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, xi+405 pp., _Istanbul, (2012), ISB:978-1-60805-252-3.
- [11] F. Basar, B. Altay, On the space of sequences of pbounded variation and related matrix mappings, Ukrainian Math.J., 55(1)(2003), 136{147.
- [12] F. Basar, M. Kirisci, Almost convergence and generalized dierence matrix, Comput. Math. Appl., 61(3) (2011), 602{611.
- [13] M. Basarr, Paranormed Cesaro dierence sequence space and related matrix transformation, Doga Tr. J. Math., 15(1991), 14{19.
- [14] M. Basarr, On the generalized Riesz B-dierence sequence spaces, Filomat., 24(4)(2010), 35{52.
- [15] M. Basarr, F. Basar, E. E. Kara, On the Fibonacci Dierence Null and Convergent Sequences, arXiv:1309.0150.
- [16] M. Basarr, E. E. Kara, On some dierence sequence spaces of weighted means and compact operators, Ann. Funct. Anal., 2(2)(2011), 116{131.
- [17] M. Basarr, E. E. Kara, On compact operators on the Riesz Bmdierence sequence space, Iran J. Sci. Technol. Trans., 35A(4)(2011), 279{285.
- [18] M. Basarr, E. E. Kara, On compact operators on the Riesz Bmdierence sequence space-II, Iran J. Sci. Technol. Trans., 36A(3)(2012), 371{376.
- [19] M. Basarr, E. E. Kara, On the Bdierence sequence space derived by generalized weighted mean and compact operators, J. Math. Anal. Appl., 391(2012), 67{81.
- [20] M. Basarr, E. E. Kara, On the mth order dierence sequence space of generalized weighted mean and compact operator, Acta. Math. Sci., 33B(3)(2013), 1{18.
- [21] M. Basarr, M. Kaykc, On the generalized BthRiesz dierence sequence space and betaproperty, J. Inequal. Appl., ID 385029, (2009), 18pp.
- [22] M. Basarr, M. Ozturk, On the Riesz diference sequence space, Rend. Circ. Mat. Palermo., 57(2008), 377{389.
- [23] M. Basarr, M. Ozturk, On some Generalized Bmdierence Riesz Sequence Spaces and Uniform Opial Property, J. Inequal. Appl., ID 485730 (2011), 17 pp.
- [24] M. Candan, Some new sequence spaces dened by a modulus function and an innite matrix in a seminormed space, J. Math. Anal., 3(2) (2012), 1{9.
- [25] M. Candan, Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl., 281(2012), 15 pp.
- [26] M. Candan, Almost convergence and double sequential band matrix, Acta. Math. Sci., 34B(2)(2014), 354{366.
- [27] M. Candan, A new sequence space isomorphic to the space `(p) and compact operators, J. Math. Comput. Sci., 4, No: 2(2014), 306{334.
- [28] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Dierence Edu., (2014)163, 18 pp.
- [29] M. Candan, Some new sequence spaces derived from the spaces of bounded, convergent and null sequences, Int. J. Mod. Math. Sci., 12(2)(2014), 74-87.
- [30] M. Candan, Vector-Valued FK-spaces dened by a modulus function and an innite matrix, Thai J. Math., 12(1)(2014),155-165.
- [31] M. Candan, A new aproach on the spaces of generalized Fibonacci dierence null and convergent sequences, Math. terna., 1(5)(2015), 191{210.
- [32] M. Candan, A. Gunes, Paranormed sequence space of non-absolute type founded using generalized dierence matrix, Proc. Natl. Acad. Sci., India Sect. A Phys. Sci., 85(2)(2015), 269{276.
- [33] M. Candan, E. E. Kara, A study on topological and geometrical characteristics of new Banach sequence spaces, Gulf J. of Math., 3(4)(2015), 67-84.
- [34] M. Candan, K. Kayaduman, Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core, Brithish J. Math. Comput. Sci., 7(2)(2015), 150{167.
- [35] M. Candan, _I. Solak, On some Dierence Sequence Spaces Generated by Innite Matrices, Int. J. Pure Appl. Math., 25(1)(2005), 79{85.
- [36] M. Candan, _I. Solak, On New Dierence Sequence Spaces Generated by Innite Matrices, Int. J. Sci. and Tecnology., 1(1)(2006), 15{17.
- [37] B. Choudhary, S. K Mishra, On Kothe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 245(1993), 291{301.
- [38] R. C olak, M. Et, Malkowsky E, Some Topics of Sequence Spaces, Lecture Notes in Mathematics, Frat Univ, Elazg, Turkey,(2004), pp. 1{63, Frat Univ, Press, ISBN: 975-394-038-6.
- [39] R. C olak, M. Et, On some generalized dierence sequence spaces and related matrix transformations, Hokkaido Math. J., 26(3)(1997), 483{492.
- [40] S. Demiriz, C. C akan, Some topolojical and geometrical properties of a new dierence sequence space, Abstr. Appl. Anal., doi:10.1155/2011/213878, 14 pp.
- [41] M. Et, Generalized Cesaro dierence sequence spaces of non-absolute type involving lacunary sequence spaces, Appl. Math. Comput., 219(17)(2013), 9372{9376.
- [42] M. Et, M. Isk, On pa-dual spaces of generalized dierence sequence spaces, Appl. Math. Lett., 25(10)(2012), 1486{1489.
- [43] A. H. Ganie, N. A. Sheikh, New type of paranormed sequence space of non-absolute type and a matrix transformation, Int, J of Mod, Math, Sci., 8(2)(2013), 196{211.
- [44] K. Goswin, G. Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180(1993), 223{238.
- [45] C. G. Lascarides, I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Cambridge Philos. Soc., 68(1970), 99{104.
- [46] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 38(2013).
- [47] E. E. Kara, M. Basarr, M. Mursaleen, Compact operators on the Fibonacci dierence sequence spaces lp( b F) and l1( b F), 1st International Eurasian Conf. on Math.Sci.and Appl. Prishtine-Kosovo, (2012), September 3-7.
- [48] E. E. Kara, M. Ozturk, M. Basarr, Some topological and geometric properties of generalized Euler sequence spaces, Math., Slovaca, 60(3)(2010), 385{398.
- [49] H. Kzmaz, On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 169{176.
- [50] M. Kirisci, Almost convergence and generalized weighted mean I, AIP Conf. Proc. vol, 1470(2012), pp. 191{194.
- [51] M. Kirisci, On the spaces of Euler almost null and Euler almost convergent sequences, Commun. Fac. Sci. Univ., Ankara, 2(2013), 85{100.
- [52] M. Kirisci, Almost convergence and generalized weighted mean II, J. Inequal. Appl., ID 193,(2014), 13pp.
- [53] M. Kirisci, F. Basar, Some new sequence spaces derived by the domain of generalized dierence matrix, Comput. Math. Appl., 60(5)(2010), 1299{1309.
- [54] S. Konca, M. Basarr, Generalized dierence sequence spaces associated with a multiplier sequence on a real nnormed space, J. Inequal. Appl., ID 335(2013), 12 pp.
- [55] S. Konca, M. Basarr, On some spaces of almost lacunary convergent sequences derived by
Riesz mean and weighted almost lacunary statistical convergence in a real nnormedspace,
J, Inequal. Appl., ID 81(2014), 11 pp.
- [56] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math., Oxford, 18(2)(1967),
345{355.