The aim of this paper is to establish some new Cebysev type inequalities involving functions whose mixed partial derivatives are (h1; h2)- convex on the co-ordinates.
[1] Ahmad, F., Barnett, N. S., & Dragomir, S. S. (2009). New weighted Ostrowski and Cebysev
type inequalities. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e1408-e1412.
[2] Alomari, M., & Darus, M. (2008). The Hadamard's inequality for s-convex function of 2-
variables on the co-ordinates. International Journal of Math. Analysis, 2(13), 629-638.
[3] Boukerrioua, K., Guezane-Lakoud, A.(2007). On generalization of Cebysev type inequalities.
J. Inequal. Pure Appl. Math. 8,2, Art 55.
[4] Chebyshev, P. L. (1882). Sur les expressions approximatives des integrales denies par les
autres prises entre les m^emes limites. InProc.Math.Soc.Charkov(Vol.2,pp.93-98):
[5] Dragomir, S. S. (2001). On Hadamard's inequality for convex functions on the co-ordinates
in a rectangle from the plane. Taiwanese J Math. 4, 775{788.
[6] Guazene-Lakoud, A. and Aissaoui, F.2011. New Cebysev type inequalities for double integrals,
J. Math. Inequal, 5(4) , 453{462.
[7] Latif, M. A., & Alomari, M. (2009). On Hadamard-type inequalities for h-convex functions
on the co-ordinates. International Journal of Math. Analysis, 3(33), 1645-1656.
[8] Pachpatte, B. G., & Talkies, N. A. (2006). On Cebysev type inequalities involving functions
whose derivatives belong to Lp spaces. J. Inequal. Pure and Appl. Math, 7(2), Art 58.
[9] Pachaptte, B. G. (2003). On some inequalities for convex functions,RGMIA Res.Rep.Coll, 6.
[10] Pachpatte, B. G. (2006). On Cebysev-Gruss type inequalities via Pecaric's extension of the
Montgomery identity. JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic
only], 7(1), Art 11 .
[11] Sarikaya, M.Z., Budak, H., Yaldiz, H. (2014). Some New Ostrowski Type Inequalities for
Co-Ordinated Convex Functions." Turkish Journal of Analysis and Number Theory, vol. 2,
no. 5 (2014).
[12] Sarikaya, M.Z., Budak, H., Yaldiz, H. Cebysev type inequalities for co-ordinated convex
functions. Pure and Applied Mathematics Letters 2(2014)44-48.
Year 2015,
Volume: 3 Issue: 2, 77 - 88, 01.10.2015
[1] Ahmad, F., Barnett, N. S., & Dragomir, S. S. (2009). New weighted Ostrowski and Cebysev
type inequalities. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e1408-e1412.
[2] Alomari, M., & Darus, M. (2008). The Hadamard's inequality for s-convex function of 2-
variables on the co-ordinates. International Journal of Math. Analysis, 2(13), 629-638.
[3] Boukerrioua, K., Guezane-Lakoud, A.(2007). On generalization of Cebysev type inequalities.
J. Inequal. Pure Appl. Math. 8,2, Art 55.
[4] Chebyshev, P. L. (1882). Sur les expressions approximatives des integrales denies par les
autres prises entre les m^emes limites. InProc.Math.Soc.Charkov(Vol.2,pp.93-98):
[5] Dragomir, S. S. (2001). On Hadamard's inequality for convex functions on the co-ordinates
in a rectangle from the plane. Taiwanese J Math. 4, 775{788.
[6] Guazene-Lakoud, A. and Aissaoui, F.2011. New Cebysev type inequalities for double integrals,
J. Math. Inequal, 5(4) , 453{462.
[7] Latif, M. A., & Alomari, M. (2009). On Hadamard-type inequalities for h-convex functions
on the co-ordinates. International Journal of Math. Analysis, 3(33), 1645-1656.
[8] Pachpatte, B. G., & Talkies, N. A. (2006). On Cebysev type inequalities involving functions
whose derivatives belong to Lp spaces. J. Inequal. Pure and Appl. Math, 7(2), Art 58.
[9] Pachaptte, B. G. (2003). On some inequalities for convex functions,RGMIA Res.Rep.Coll, 6.
[10] Pachpatte, B. G. (2006). On Cebysev-Gruss type inequalities via Pecaric's extension of the
Montgomery identity. JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic
only], 7(1), Art 11 .
[11] Sarikaya, M.Z., Budak, H., Yaldiz, H. (2014). Some New Ostrowski Type Inequalities for
Co-Ordinated Convex Functions." Turkish Journal of Analysis and Number Theory, vol. 2,
no. 5 (2014).
[12] Sarikaya, M.Z., Budak, H., Yaldiz, H. Cebysev type inequalities for co-ordinated convex
functions. Pure and Applied Mathematics Letters 2(2014)44-48.
Meftah, B., & Boukerrıoua, K. (2015). ON SOME CEBYSEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE (h1; h2)-CONVEX ON THE CO-ORDINATES. Konuralp Journal of Mathematics, 3(2), 77-88.
AMA
Meftah B, Boukerrıoua K. ON SOME CEBYSEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE (h1; h2)-CONVEX ON THE CO-ORDINATES. Konuralp J. Math. October 2015;3(2):77-88.
Chicago
Meftah, B., and K. Boukerrıoua. “ON SOME CEBYSEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE (h1; H2)-CONVEX ON THE CO-ORDINATES”. Konuralp Journal of Mathematics 3, no. 2 (October 2015): 77-88.
EndNote
Meftah B, Boukerrıoua K (October 1, 2015) ON SOME CEBYSEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE (h1; h2)-CONVEX ON THE CO-ORDINATES. Konuralp Journal of Mathematics 3 2 77–88.
IEEE
B. Meftah and K. Boukerrıoua, “ON SOME CEBYSEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE (h1; h2)-CONVEX ON THE CO-ORDINATES”, Konuralp J. Math., vol. 3, no. 2, pp. 77–88, 2015.
ISNAD
Meftah, B. - Boukerrıoua, K. “ON SOME CEBYSEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE (h1; H2)-CONVEX ON THE CO-ORDINATES”. Konuralp Journal of Mathematics 3/2 (October 2015), 77-88.
JAMA
Meftah B, Boukerrıoua K. ON SOME CEBYSEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE (h1; h2)-CONVEX ON THE CO-ORDINATES. Konuralp J. Math. 2015;3:77–88.
MLA
Meftah, B. and K. Boukerrıoua. “ON SOME CEBYSEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE (h1; H2)-CONVEX ON THE CO-ORDINATES”. Konuralp Journal of Mathematics, vol. 3, no. 2, 2015, pp. 77-88.
Vancouver
Meftah B, Boukerrıoua K. ON SOME CEBYSEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE (h1; h2)-CONVEX ON THE CO-ORDINATES. Konuralp J. Math. 2015;3(2):77-88.