[1] A. Barani, S. Barani, Hermite-Hadamard inequalities for functions when a power of the absolute value of the rst derivative is P-convex, Bull. Aust. Math. Soc, 86 (2012), 126-134.
[2] A. Barani, A.G. Ghazanfari and S.S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 2012, 2012:247.
[3] S.S. Dragomir, Two renements of Hadamard's inequalities, Coll. Pap. of the Fac. of Sci. Kragujevac (Yugoslavia) 11 (1990), 23-26. ZBL No. 729: 26017.
[4] S.S. Dragomir, A mapping in connection to Hadamard's inequality, An Ostro. Akad. Wiss. Math. -Natur (Wien) 128 (1991), 17-20. MR 93h: 26032. ZBL No. 747: 26015.
[5] S.S. Dragomir, On Hadamard's inequality for convex functions, Math. Balkanica., 6 (1992), 215-222. MR 934: 26033.
[6] S.S. Dragomir, A renement of Hadamard's inequality for isotonic linear functionals, Tamkang J. Math., 24 (1993), 101-106.
[7] S.S. Dragomir, Two mappings in connection to Hadamard's inequality, J. Math. Anal. Appl. 167 (1992), 49-56. MR 93m: 26038. ZBL No. 758: 26014.
[8] S.S. Dragomir, Some renements of Hadamard's inequalities, Gaz. Mat. Metod. (Romania) 11 (1990), 189-191.
[9] S.S. Dragomir, Some integral inequalities for differentiable convex functions, Contributions, Macedonian Acad. of sci. and arts., (Scopie) 16 (1992), 77-80.
[10] S.S. Dragomir, D.M. Milosevic and J. Sandor, On some renements of Hadamard's inequalities and applications, Univ. Beograd, Publ. Elektrotelm. Fak., Ser. Mat., 4 (1993), 3-10.
[11] S.S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plan, Taiwan J. Math., 5 (2001), 775-778.
[12] A.G. Ghazanfari, A. Barani, Some Hermite-Hadamard type inequalities for the product of two operator preinvex functions, Banach J. Math. Anal., 9 (2015), 9-20.
[13] M.A. Latif, Some inequalities for differentiable prequasiinvex functions with applications, KJM., 1 (2013), 17-29.
[14] M.E. Özdemir, A.O. Akdemir, Ç.Yıldız, On the co-ordinated convex functions, Appl. Math. Info. Sci., 8 (2014), 1085-1091.
[15] M.E. Özdemir, A.O. Akdemir, On some Hadamard-type inequalities for convex functions on a rectanfuler box, volume 2011, year 2011 article ID jnaa-00101, 10 pages doi:10.5899/2011/jnaa-00101
[16] J.E. Pecaric and S.S. Dragomir, On some integral inequalities for convex functions, Bull. Mat. Inst. Pol. Iasi, 36 (1990), 19-23.
[17] J.E. Pecaric and S.S. Dragomir, A generalization of Hadamard's inequality for isotonic linear functionals, Rodovi Math., (Sarajevo) 7 (1991), 103-107. 26026.
[18] M.Z. Sarıkaya, Erhan. Set, M.E. Özdemir and S.S. Dragomir, New some Hermite-Hadamard's type inequalities for co-ordinated convex functions, Tamsui Oxford Journal of Information and Mathematical Sciences., 28 (2012), 137-152.
[19] D.Y. Wang, K.L. Tseng, G.S. Yang, Some Hadamard's inequality for co-ordinated convex functions in a rectangle from the plane, Taiwan J. Math., 11 (2007), 63-73.
[20] B-Y. Xi, J. Hua , F. Qi, Hermite-Hadamard type inequalities for extended s-convex functions on the co-ordinates in a rectangle, Appl. Anal., 20 (2014), 29-39.
[1] A. Barani, S. Barani, Hermite-Hadamard inequalities for functions when a power of the absolute value of the rst derivative is P-convex, Bull. Aust. Math. Soc, 86 (2012), 126-134.
[2] A. Barani, A.G. Ghazanfari and S.S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 2012, 2012:247.
[3] S.S. Dragomir, Two renements of Hadamard's inequalities, Coll. Pap. of the Fac. of Sci. Kragujevac (Yugoslavia) 11 (1990), 23-26. ZBL No. 729: 26017.
[4] S.S. Dragomir, A mapping in connection to Hadamard's inequality, An Ostro. Akad. Wiss. Math. -Natur (Wien) 128 (1991), 17-20. MR 93h: 26032. ZBL No. 747: 26015.
[5] S.S. Dragomir, On Hadamard's inequality for convex functions, Math. Balkanica., 6 (1992), 215-222. MR 934: 26033.
[6] S.S. Dragomir, A renement of Hadamard's inequality for isotonic linear functionals, Tamkang J. Math., 24 (1993), 101-106.
[7] S.S. Dragomir, Two mappings in connection to Hadamard's inequality, J. Math. Anal. Appl. 167 (1992), 49-56. MR 93m: 26038. ZBL No. 758: 26014.
[8] S.S. Dragomir, Some renements of Hadamard's inequalities, Gaz. Mat. Metod. (Romania) 11 (1990), 189-191.
[9] S.S. Dragomir, Some integral inequalities for differentiable convex functions, Contributions, Macedonian Acad. of sci. and arts., (Scopie) 16 (1992), 77-80.
[10] S.S. Dragomir, D.M. Milosevic and J. Sandor, On some renements of Hadamard's inequalities and applications, Univ. Beograd, Publ. Elektrotelm. Fak., Ser. Mat., 4 (1993), 3-10.
[11] S.S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plan, Taiwan J. Math., 5 (2001), 775-778.
[12] A.G. Ghazanfari, A. Barani, Some Hermite-Hadamard type inequalities for the product of two operator preinvex functions, Banach J. Math. Anal., 9 (2015), 9-20.
[13] M.A. Latif, Some inequalities for differentiable prequasiinvex functions with applications, KJM., 1 (2013), 17-29.
[14] M.E. Özdemir, A.O. Akdemir, Ç.Yıldız, On the co-ordinated convex functions, Appl. Math. Info. Sci., 8 (2014), 1085-1091.
[15] M.E. Özdemir, A.O. Akdemir, On some Hadamard-type inequalities for convex functions on a rectanfuler box, volume 2011, year 2011 article ID jnaa-00101, 10 pages doi:10.5899/2011/jnaa-00101
[16] J.E. Pecaric and S.S. Dragomir, On some integral inequalities for convex functions, Bull. Mat. Inst. Pol. Iasi, 36 (1990), 19-23.
[17] J.E. Pecaric and S.S. Dragomir, A generalization of Hadamard's inequality for isotonic linear functionals, Rodovi Math., (Sarajevo) 7 (1991), 103-107. 26026.
[18] M.Z. Sarıkaya, Erhan. Set, M.E. Özdemir and S.S. Dragomir, New some Hermite-Hadamard's type inequalities for co-ordinated convex functions, Tamsui Oxford Journal of Information and Mathematical Sciences., 28 (2012), 137-152.
[19] D.Y. Wang, K.L. Tseng, G.S. Yang, Some Hadamard's inequality for co-ordinated convex functions in a rectangle from the plane, Taiwan J. Math., 11 (2007), 63-73.
[20] B-Y. Xi, J. Hua , F. Qi, Hermite-Hadamard type inequalities for extended s-convex functions on the co-ordinates in a rectangle, Appl. Anal., 20 (2014), 29-39.
Baranı, A., & Malmır, F. (2016). NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS ON A RECTANGULAR BOX. Konuralp Journal of Mathematics, 4(1), 1-22.
AMA
Baranı A, Malmır F. NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS ON A RECTANGULAR BOX. Konuralp J. Math. April 2016;4(1):1-22.
Chicago
Baranı, A., and F. Malmır. “NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS ON A RECTANGULAR BOX”. Konuralp Journal of Mathematics 4, no. 1 (April 2016): 1-22.
EndNote
Baranı A, Malmır F (April 1, 2016) NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS ON A RECTANGULAR BOX. Konuralp Journal of Mathematics 4 1 1–22.
IEEE
A. Baranı and F. Malmır, “NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS ON A RECTANGULAR BOX”, Konuralp J. Math., vol. 4, no. 1, pp. 1–22, 2016.
ISNAD
Baranı, A. - Malmır, F. “NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS ON A RECTANGULAR BOX”. Konuralp Journal of Mathematics 4/1 (April 2016), 1-22.
JAMA
Baranı A, Malmır F. NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS ON A RECTANGULAR BOX. Konuralp J. Math. 2016;4:1–22.
MLA
Baranı, A. and F. Malmır. “NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS ON A RECTANGULAR BOX”. Konuralp Journal of Mathematics, vol. 4, no. 1, 2016, pp. 1-22.
Vancouver
Baranı A, Malmır F. NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS ON A RECTANGULAR BOX. Konuralp J. Math. 2016;4(1):1-22.