[1] M. Alomari and M. Darus, The Hadamard's inequality for s-convex function. Int. J. Math.
Anal. (Ruse) 2 (2008), no. 13-16, 639{646.
[2] M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math.
Forum 3 (2008), no. 37-40, 1965{1975.
[3] G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135 (2002),
no. 3, 175{189.
[4] N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro and A. Sofo, Ostrowski type
inequalities for functions whose modulus of the derivatives are convex and applications. In-
equality Theory and Applications, Vol. 2 (Chinju/Masan, 2001), 19{32, Nova Sci. Publ.,
Hauppauge, NY, 2003. Preprint: RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 1 [Online
http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].
[5] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439{460.
[6] M. Bombardelli and S. Varosanec, Properties of h-convex functions related to the Hermite-
Hadamard-Fejer inequalities. Comput. Math. Appl. 58 (2009), no. 9, 1869{1877.
[7] W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in
topologischen linearen Raumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978),
13{20.
[8] W. W. Breckner and G. Orban, Continuity properties of rationally s-convex mappings with
values in an ordered topological linear space. Universitatea "Babes-Bolyai", Facultatea de
Matematica, Cluj-Napoca, 1978. viii+92 pp.
[9] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed.
G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics,
CRC Press, New York. 135-200.
[10] P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the Riemann-
Stieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et
al. (Eds.), World Science Publishing, 2002, 53-62.
[11] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time
dierentiable mappings and applications, Demonstratio Mathematica, 32(2) (1999), 697|
712.
[12] G. Cristescu, Hadamard type inequalities for convolution of h-convex functions. Ann. Tiberiu
Popoviciu Semin. Funct. Equ. Approx. Convexity 8 (2010), 3{11.
[13] S. S. Dragomir, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM,
3(1) (1999), 127-135.
[14] S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications,
Comp. Math. Appl., 38 (1999), 33-37.
[15] S. S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl.
Math., 7 (2000), 477-485.
[16] S. S. Dragomir, On the Ostrowski's inequality for mappings of bounded variation and applications,
Math. Ineq. & Appl., 4(1) (2001), 33-40.
[17] S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral
R b
a f (t) du (t)
where f is of Holder type and u is of bounded variation and applications, J. KSIAM, 5(1)
(2001), 35-45.
[18] S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure
& Appl. Math., 3(5) (2002), Art. 68.
[19] S. S. Dragomir, An inequality improving the rst Hermite-Hadamard inequality for convex
functions dened on linear spaces and applications for semi-inner products. J. Inequal. Pure
Appl. Math. 3 (2002), no. 2, Article 31, 8 pp.
[20] S. S. Dragomir, An inequality improving the rst Hermite-Hadamard inequality for convex
functions dened on linear spaces and applications for semi-inner products, J. Inequal. Pure
Appl. Math. 3 (2002), No. 2, Article 31.
[21] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex
functions dened on linear spaces and applications for semi-inner products, J. Inequal. Pure
Appl. Math. 3 (2002), No.3, Article 35.
[22] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, Revista
Math. Complutense, 16(2) (2003), 373-382.
[23] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in
Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1
[24] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions
on linear spaces, Preprint RGMIA Res. Rep. Coll. 16 (2013), Art. 72 [Online
http://rgmia.org/papers/v16/v16a72.pdf].
[25] S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski
inequality for mappings of Holder type and applications in numerical analysis, Bull. Math.
Soc. Sci. Math. Romanie, 42(90) (4) (1999), 301-314.
[26] S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the
second sense. Demonstratio Math. 32 (1999), no. 4, 687{696.
[27] S.S. Dragomir and S. Fitzpatrick,The Jensen inequality for s-Breckner convex functions in
linear spaces. Demonstratio Math. 33 (2000), no. 1, 43{49.
[28] S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova
and Levin. Indian J. Math. 39 (1997), no. 1, 1{9.
[29] S. S. Dragomir and C. E. M. Pearce, On Jensen's inequality for a class of functions of
Godunova and Levin. Period. Math. Hungar. 33 (1996), no. 2, 93{100.
[30] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality,
Bull. Austral. Math. Soc. 57 (1998), 377-385.
[31] S. S. Dragomir, J. Pecaric and L. Persson, Some inequalities of Hadamard type. Soochow J.
Math. 21 (1995), no. 3, 335{341.
[32] S. S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in
Numerical Integration, Kluwer Academic Publisher, 2002.
[33] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L1-norm and applications
to some special means and to some numerical quadrature rules, Tamkang J. of Math.,
28 (1997), 239-244.
[34] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error
bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11
(1998), 105-109.
[35] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in Lp-norm and applications
to some special means and to some numerical quadrature rules, Indian J. of Math.,
40(3) (1998), 245-304.
[36] A. El Farissi, Simple proof and refeinment of Hermite-Hadamard inequality, J. Math. Ineq.
4 (2010), No. 3, 365{369.
[37] E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains
convex, monotone and some other forms of functions. (Russian) Numerical mathematics and
mathematical physics (Russian), 138{142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985
[38] H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48
(1994), no. 1, 100{111.
[39] E. Kikianty and S. S. Dragomir, Hermite-Hadamard's inequality and the p-HH-norm on the
Cartesian product of two copies of a normed space, Math. Inequal. Appl. (in press).
[40] U. S. Kirmaci, M. Klaricic Bakula, M. E Ozdemir and J. Pecaric, Hadamard-type inequalities
for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26{35.
[41] M. A. Latif, On some inequalities for h-convex functions. Int. J. Math. Anal. (Ruse) 4 (2010),
no. 29-32, 1473{1482.
[42] D. S. Mitrinovic and I. B. Lackovic, Hermite and convexity, Aequationes Math. 28 (1985),
229{232.
[43] D. S. Mitrinovic and J. E. Pecaric, Note on a class of functions of Godunova and Levin. C.
R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 1, 33{36.
[44] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type
inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92{104.
[45] J. E. Pecaric and S. S. Dragomir, On an inequality of Godunova-Levin and some renements
of Jensen integral inequality. Itinerant Seminar on Functional Equations, Approximation and
Convexity (Cluj-Napoca, 1989), 263{268, Preprint, 89-6, Univ. "Babes-Bolyai", Cluj-Napoca,
1989.
[46] J. Pecaric and S. S. Dragomir, A generalization of Hadamard's inequality for isotonic linear
functionals, Radovi Mat. (Sarajevo) 7 (1991), 103{107.
[47] M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova-Levin-Schur class of
functions. Math. Inequal. Appl. 12 (2009), no. 4, 853{862.
[48] M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for hconvex
functions. J. Math. Inequal. 2 (2008), no. 3, 335{341.
[49] E. Set, M. E. Ozdemir and M. Z. Sarkaya, New inequalities of Ostrowski's type for s-convex
functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012),
no. 1, 67{82.
[50] M. Z. Sarikaya, E. Set and M. E. Ozdemir, On some new inequalities of Hadamard type
involving h-convex functions. Acta Math. Univ. Comenian. (N.S.) 79 (2010), no. 2, 265{272.
[51] M. Tunc, Ostrowski-type inequalities via h-convex functions with applications to special
means. J. Inequal. Appl. 2013, 2013:326.
[52] S. Varosanec, On h-convexity. J. Math. Anal. Appl. 326 (2007), no. 1, 303{311.
Year 2016,
Volume: 4 Issue: 1, 54 - 67, 01.04.2016
[1] M. Alomari and M. Darus, The Hadamard's inequality for s-convex function. Int. J. Math.
Anal. (Ruse) 2 (2008), no. 13-16, 639{646.
[2] M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math.
Forum 3 (2008), no. 37-40, 1965{1975.
[3] G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135 (2002),
no. 3, 175{189.
[4] N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro and A. Sofo, Ostrowski type
inequalities for functions whose modulus of the derivatives are convex and applications. In-
equality Theory and Applications, Vol. 2 (Chinju/Masan, 2001), 19{32, Nova Sci. Publ.,
Hauppauge, NY, 2003. Preprint: RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 1 [Online
http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].
[5] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439{460.
[6] M. Bombardelli and S. Varosanec, Properties of h-convex functions related to the Hermite-
Hadamard-Fejer inequalities. Comput. Math. Appl. 58 (2009), no. 9, 1869{1877.
[7] W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in
topologischen linearen Raumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978),
13{20.
[8] W. W. Breckner and G. Orban, Continuity properties of rationally s-convex mappings with
values in an ordered topological linear space. Universitatea "Babes-Bolyai", Facultatea de
Matematica, Cluj-Napoca, 1978. viii+92 pp.
[9] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed.
G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics,
CRC Press, New York. 135-200.
[10] P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the Riemann-
Stieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et
al. (Eds.), World Science Publishing, 2002, 53-62.
[11] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time
dierentiable mappings and applications, Demonstratio Mathematica, 32(2) (1999), 697|
712.
[12] G. Cristescu, Hadamard type inequalities for convolution of h-convex functions. Ann. Tiberiu
Popoviciu Semin. Funct. Equ. Approx. Convexity 8 (2010), 3{11.
[13] S. S. Dragomir, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM,
3(1) (1999), 127-135.
[14] S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications,
Comp. Math. Appl., 38 (1999), 33-37.
[15] S. S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl.
Math., 7 (2000), 477-485.
[16] S. S. Dragomir, On the Ostrowski's inequality for mappings of bounded variation and applications,
Math. Ineq. & Appl., 4(1) (2001), 33-40.
[17] S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral
R b
a f (t) du (t)
where f is of Holder type and u is of bounded variation and applications, J. KSIAM, 5(1)
(2001), 35-45.
[18] S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure
& Appl. Math., 3(5) (2002), Art. 68.
[19] S. S. Dragomir, An inequality improving the rst Hermite-Hadamard inequality for convex
functions dened on linear spaces and applications for semi-inner products. J. Inequal. Pure
Appl. Math. 3 (2002), no. 2, Article 31, 8 pp.
[20] S. S. Dragomir, An inequality improving the rst Hermite-Hadamard inequality for convex
functions dened on linear spaces and applications for semi-inner products, J. Inequal. Pure
Appl. Math. 3 (2002), No. 2, Article 31.
[21] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex
functions dened on linear spaces and applications for semi-inner products, J. Inequal. Pure
Appl. Math. 3 (2002), No.3, Article 35.
[22] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, Revista
Math. Complutense, 16(2) (2003), 373-382.
[23] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in
Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1
[24] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions
on linear spaces, Preprint RGMIA Res. Rep. Coll. 16 (2013), Art. 72 [Online
http://rgmia.org/papers/v16/v16a72.pdf].
[25] S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski
inequality for mappings of Holder type and applications in numerical analysis, Bull. Math.
Soc. Sci. Math. Romanie, 42(90) (4) (1999), 301-314.
[26] S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the
second sense. Demonstratio Math. 32 (1999), no. 4, 687{696.
[27] S.S. Dragomir and S. Fitzpatrick,The Jensen inequality for s-Breckner convex functions in
linear spaces. Demonstratio Math. 33 (2000), no. 1, 43{49.
[28] S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova
and Levin. Indian J. Math. 39 (1997), no. 1, 1{9.
[29] S. S. Dragomir and C. E. M. Pearce, On Jensen's inequality for a class of functions of
Godunova and Levin. Period. Math. Hungar. 33 (1996), no. 2, 93{100.
[30] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality,
Bull. Austral. Math. Soc. 57 (1998), 377-385.
[31] S. S. Dragomir, J. Pecaric and L. Persson, Some inequalities of Hadamard type. Soochow J.
Math. 21 (1995), no. 3, 335{341.
[32] S. S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in
Numerical Integration, Kluwer Academic Publisher, 2002.
[33] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L1-norm and applications
to some special means and to some numerical quadrature rules, Tamkang J. of Math.,
28 (1997), 239-244.
[34] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error
bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11
(1998), 105-109.
[35] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in Lp-norm and applications
to some special means and to some numerical quadrature rules, Indian J. of Math.,
40(3) (1998), 245-304.
[36] A. El Farissi, Simple proof and refeinment of Hermite-Hadamard inequality, J. Math. Ineq.
4 (2010), No. 3, 365{369.
[37] E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains
convex, monotone and some other forms of functions. (Russian) Numerical mathematics and
mathematical physics (Russian), 138{142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985
[38] H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48
(1994), no. 1, 100{111.
[39] E. Kikianty and S. S. Dragomir, Hermite-Hadamard's inequality and the p-HH-norm on the
Cartesian product of two copies of a normed space, Math. Inequal. Appl. (in press).
[40] U. S. Kirmaci, M. Klaricic Bakula, M. E Ozdemir and J. Pecaric, Hadamard-type inequalities
for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26{35.
[41] M. A. Latif, On some inequalities for h-convex functions. Int. J. Math. Anal. (Ruse) 4 (2010),
no. 29-32, 1473{1482.
[42] D. S. Mitrinovic and I. B. Lackovic, Hermite and convexity, Aequationes Math. 28 (1985),
229{232.
[43] D. S. Mitrinovic and J. E. Pecaric, Note on a class of functions of Godunova and Levin. C.
R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 1, 33{36.
[44] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type
inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92{104.
[45] J. E. Pecaric and S. S. Dragomir, On an inequality of Godunova-Levin and some renements
of Jensen integral inequality. Itinerant Seminar on Functional Equations, Approximation and
Convexity (Cluj-Napoca, 1989), 263{268, Preprint, 89-6, Univ. "Babes-Bolyai", Cluj-Napoca,
1989.
[46] J. Pecaric and S. S. Dragomir, A generalization of Hadamard's inequality for isotonic linear
functionals, Radovi Mat. (Sarajevo) 7 (1991), 103{107.
[47] M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova-Levin-Schur class of
functions. Math. Inequal. Appl. 12 (2009), no. 4, 853{862.
[48] M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for hconvex
functions. J. Math. Inequal. 2 (2008), no. 3, 335{341.
[49] E. Set, M. E. Ozdemir and M. Z. Sarkaya, New inequalities of Ostrowski's type for s-convex
functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012),
no. 1, 67{82.
[50] M. Z. Sarikaya, E. Set and M. E. Ozdemir, On some new inequalities of Hadamard type
involving h-convex functions. Acta Math. Univ. Comenian. (N.S.) 79 (2010), no. 2, 265{272.
[51] M. Tunc, Ostrowski-type inequalities via h-convex functions with applications to special
means. J. Inequal. Appl. 2013, 2013:326.
[52] S. Varosanec, On h-convexity. J. Math. Anal. Appl. 326 (2007), no. 1, 303{311.