[1] L. Fejer, Uberdie Fourierreihen, II, Math. Naturwise. Anz Ungar. Akad., Wiss, 24 (1906),
369-390, (in Hungarian).
[2] J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier d'une fonction
consideree par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.
[3] _I. _ Iscan, Hermite-Hadamard-Fejer type inequalities for convex functions via fractional inte-
grals, arXiv preprint arXiv:1404.7722 (2014).
[4] _I. _ Iscan, Generalization of dierent type integral inequalities for s-convex functions via frac-
tional integrals, Applicable Analysis, 2013. doi: 10.1080/00036811.2013.851785.
[5] _I. _ Iscan, New general integral inequalities for quasi-geometrically convex functions via frac-
tional integrals, J. Inequal. Appl., 2013(491) (2013), 15 pages.
[6] _I. _ Iscan, On generalization of dierent type integral inequalities for s-convex functions via
fractional integrals, Mathematical Sciences and Applications E-Notes, 2(1) (2014), 55-67.
[7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional dierential
equations, Elsevier, Amsterdam 2006.
[8] M. Kunt, _I. _ Iscan, On new inequalities of Hermite-Hadamard-Fejer type for GA-convex func-
tions via fractional integrals, RGMIA Research Report Collection, 18(2015), Article 108, 12
pp.
[9] M. A. Latif, S. S. Dragomir and E. Momaniat, Some Fejer type integral inequalities for
geometrically-arithmetically-convex functions with applications, RGMIA Research Report
Collection, 18(2015), Article 25, 18 pp.
[10] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2)
(2000), 155-167.
[11] C. P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (4) (2003), 571-579.
[12] M.Z. Sarkaya, On new Hermite Hadamard Fejer type integral inequalities, Stud. Univ. Babes-
Bolyai Math. 57(3) (2012), 377-386.
[13] Erhan Set, _I. _ Iscan, M. Zeki Sarikaya, M. Emin Ozdemir, On new inequalities of Hermite-
Hadamard-Fejer type for convex functions via fractional integrals, Applied Mathematics and
Computation, 259 (2015) 875-881.
[14] Y. Shuang, H. P. Yin, F. Qi, Hermite-Hadamard type integral inequalities for geometrically-
arithmetically s-convex functions, Analysis (Munich) 33 (2) (2013) 197-208.
[15] K.-L. Tseng, G.-S. Yang and K.-C. Hsu, Some inequalities for dierentiable mappings and
applications to Fejer inequality and weighted trapezoidal formula, Taiwanese journal of Math-
ematics, 15(4) (2011), 1737-1747.
[16] J. Wang, X. Li, M. Feckan and Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-
Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92(11) (2012), 2241-2253.
[17] J. Wang, C. Zhu and Y. Zhou, New generalized Hermite-Hadamard type inequalities and
applications to special means, J. Inequal. Appl., 2013(325) (2013), 15 pages.
Year 2016,
Volume: 4 Issue: 1, 130 - 139, 01.04.2016
[1] L. Fejer, Uberdie Fourierreihen, II, Math. Naturwise. Anz Ungar. Akad., Wiss, 24 (1906),
369-390, (in Hungarian).
[2] J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier d'une fonction
consideree par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.
[3] _I. _ Iscan, Hermite-Hadamard-Fejer type inequalities for convex functions via fractional inte-
grals, arXiv preprint arXiv:1404.7722 (2014).
[4] _I. _ Iscan, Generalization of dierent type integral inequalities for s-convex functions via frac-
tional integrals, Applicable Analysis, 2013. doi: 10.1080/00036811.2013.851785.
[5] _I. _ Iscan, New general integral inequalities for quasi-geometrically convex functions via frac-
tional integrals, J. Inequal. Appl., 2013(491) (2013), 15 pages.
[6] _I. _ Iscan, On generalization of dierent type integral inequalities for s-convex functions via
fractional integrals, Mathematical Sciences and Applications E-Notes, 2(1) (2014), 55-67.
[7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional dierential
equations, Elsevier, Amsterdam 2006.
[8] M. Kunt, _I. _ Iscan, On new inequalities of Hermite-Hadamard-Fejer type for GA-convex func-
tions via fractional integrals, RGMIA Research Report Collection, 18(2015), Article 108, 12
pp.
[9] M. A. Latif, S. S. Dragomir and E. Momaniat, Some Fejer type integral inequalities for
geometrically-arithmetically-convex functions with applications, RGMIA Research Report
Collection, 18(2015), Article 25, 18 pp.
[10] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2)
(2000), 155-167.
[11] C. P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (4) (2003), 571-579.
[12] M.Z. Sarkaya, On new Hermite Hadamard Fejer type integral inequalities, Stud. Univ. Babes-
Bolyai Math. 57(3) (2012), 377-386.
[13] Erhan Set, _I. _ Iscan, M. Zeki Sarikaya, M. Emin Ozdemir, On new inequalities of Hermite-
Hadamard-Fejer type for convex functions via fractional integrals, Applied Mathematics and
Computation, 259 (2015) 875-881.
[14] Y. Shuang, H. P. Yin, F. Qi, Hermite-Hadamard type integral inequalities for geometrically-
arithmetically s-convex functions, Analysis (Munich) 33 (2) (2013) 197-208.
[15] K.-L. Tseng, G.-S. Yang and K.-C. Hsu, Some inequalities for dierentiable mappings and
applications to Fejer inequality and weighted trapezoidal formula, Taiwanese journal of Math-
ematics, 15(4) (2011), 1737-1747.
[16] J. Wang, X. Li, M. Feckan and Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-
Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92(11) (2012), 2241-2253.
[17] J. Wang, C. Zhu and Y. Zhou, New generalized Hermite-Hadamard type inequalities and
applications to special means, J. Inequal. Appl., 2013(325) (2013), 15 pages.
Kunt, M., & İşcan, İ. (2016). ON NEW INEQUALITIES OF HERMITE-HADAMARD-FEJER TYPE FOR GA-s CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS. Konuralp Journal of Mathematics, 4(1), 130-139.
AMA
Kunt M, İşcan İ. ON NEW INEQUALITIES OF HERMITE-HADAMARD-FEJER TYPE FOR GA-s CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS. Konuralp J. Math. April 2016;4(1):130-139.
Chicago
Kunt, Mehmet, and İmdat İşcan. “ON NEW INEQUALITIES OF HERMITE-HADAMARD-FEJER TYPE FOR GA-S CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS”. Konuralp Journal of Mathematics 4, no. 1 (April 2016): 130-39.
EndNote
Kunt M, İşcan İ (April 1, 2016) ON NEW INEQUALITIES OF HERMITE-HADAMARD-FEJER TYPE FOR GA-s CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS. Konuralp Journal of Mathematics 4 1 130–139.
IEEE
M. Kunt and İ. İşcan, “ON NEW INEQUALITIES OF HERMITE-HADAMARD-FEJER TYPE FOR GA-s CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS”, Konuralp J. Math., vol. 4, no. 1, pp. 130–139, 2016.
ISNAD
Kunt, Mehmet - İşcan, İmdat. “ON NEW INEQUALITIES OF HERMITE-HADAMARD-FEJER TYPE FOR GA-S CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS”. Konuralp Journal of Mathematics 4/1 (April 2016), 130-139.
JAMA
Kunt M, İşcan İ. ON NEW INEQUALITIES OF HERMITE-HADAMARD-FEJER TYPE FOR GA-s CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS. Konuralp J. Math. 2016;4:130–139.
MLA
Kunt, Mehmet and İmdat İşcan. “ON NEW INEQUALITIES OF HERMITE-HADAMARD-FEJER TYPE FOR GA-S CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS”. Konuralp Journal of Mathematics, vol. 4, no. 1, 2016, pp. 130-9.
Vancouver
Kunt M, İşcan İ. ON NEW INEQUALITIES OF HERMITE-HADAMARD-FEJER TYPE FOR GA-s CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS. Konuralp J. Math. 2016;4(1):130-9.