Research Article
BibTex RIS Cite

ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ FUNCTION

Year 2016, Volume: 4 Issue: 2, 56 - 69, 01.10.2016

Abstract

In this paper we introduce new difference sequence spaces $r^{q}(\mathcal{M},\\ \Delta^{m}_{n},u,p)$ by using Riesz mean and Musielak-Orlicz function. We also make an effort to study some topological properties and compute $\alpha-,\beta-$ and $ \gamma- $ duals of these spaces. Finally, we study matrix transformations on newly formed spaces.

References

  • [1] A. Esi, Some new sequence spaces de ned by Orlicz Functions, Bull. Inst. Math. Acad. Sinica, 27 (1999), 71-76.
  • [2] M. Et and A. Esi, On Kothe-Toeplitz duals of generalized di erence sequence spaces, Bull. Malays. Math. Sci. Soc., 23 (2000), 25-32.
  • [3] A. Esi, B. C. Tripathy and B. Sharma, On some new type generalized difference sequence spaces, Math. Slovaca, 57 (2007), 1-8.
  • [4] A. Esi and Isik Mahmut, Some generalized difference sequence spaces, Thai J. Math., 3 (2005) 241-247.
  • [5] M. Et and R. Colak, On some generalized sequence spaces, Soochow. J. Math., 21 (1995), 377-386.
  • [6] K. G. Gross Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180 (1993), 223- 238.
  • [7] E. Herawati, M. Mursaleen and I. E. Supama Wijayanti, Order matrix transformations on some Banach lattice valued sequence spaces, Appl. Math. Comput., 247 (2014), 1122-1128.
  • [8] H. Kzmaz, On certain sequence spaces, Canad. Math-Bull., 24 (1981), 169-176.
  • [9] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
  • [10] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc., 68 (1970), 99-104.
  • [11] I. J. Maddox, Elements of Functional Analysis, The University Press, Cambridge, 1988.
  • [12] I. J. Maddox, Paranormed sequence spaces generated by in nite matrices, Proc. Camb. Phil. Soc., 64 (1968), 335-340.
  • [13] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18 (1967), 345-355.
  • [14] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
  • [15] M. Mursaleen, K. Raj and S. K.Sharma, Some spaces of difference sequences and Lacunary statistical convergence in n-normed spaces de ned by a sequence of Orlicz functions, Miskolc Math. Notes, 16 (2015), 283-304.
  • [16] M. Mursaleen, S. K. Sharma, A. Kilicman, Sequence spaces de ned by Musielak-Orlicz function over n-normed spaces, Abstr. Appl. Anal., 27 (2013), 47-58.
  • [17] M. Mursaleen, S. K Sharma, A. Kilicman, New class of generalized seminormed sequence spaces, Abstr. Appl. Anal., 2014, Article ID 461081, 7 pages.
  • [18] M. Mursaleen, S. K Sharma, S. A. Mohiuddine and A. Kilicman, New difference sequence spaces de ned by Musielak-Orlicz function, Abstr. Appl. Anal. 2014.
  • [19] J. Musielak, Orlicz spaces and modular spaces, Lecture notes in Mathematics, 1034 (1983). [20] S. A. Mohiuddine, K. Raj and A. Alotaibi, Generalized spaces of double sequences for Orlicz functions and bounded regular matrices over n-normed spaces, J. Inequal. Appl., 2014, 2014:332.
  • [21] S. A. Mohiuddine, M. Mursaleen and A. Alotaibi, Compact operators for almost conservative and strongly conservative matrices, Abstr. Appl. Anal. 2014, Art. ID 567317, 6 pp.
  • [22] G. M. Petersen, Regular matrix transformations, McGraw-Hill, London, 1966.
  • [23] K. Raj, S. K. Sharma and A. Gupta, Some difference paranormed sequence spaces over n-normed spaces de ned by Musielak-Orlicz function, Kyungpook Math. J., 54 (2014), 73-86.
  • [24] K. Raj and S.K.Sharma, Some seminormed diffrence sequence spaces de ned by Musielak Orlicz function over n-normed spaces, J. Math. Appl., 38 (2015), 125-141.
  • [25] K. Raj and M. Arsalan Khan, Some spaces of double sequences their duals and matrix transformations , Azerb. J. Math., 6 (2016), 19pp.
  • [26] N. A. Sheikh and A. H. Ganie, A new paranormed sequence space and some matrix transformations , Acta Math. Acad. Paedago. Nyregy., 28 (2012), 47-58.
  • [27] N. A. Sheikh and A. H. Ganie, On the sequence space l(p, s) and some matrix transformations , Nonlinear func. Anal. Appl., 18 (2013), 253-258.
  • [28] B. C. Tripathy, A. Esi and T. Balakrushna, On a new type of generalized difference Cesaro sequence spaces, Soochow J. Math., 31 (2005), 333-340.
  • [29] O. Toeplitz, Uberallegemeine Lineare mittelbildungen, Prace Math. Fiz., 22 (1991), 113-119.
  • [30] C. S. Wang, On Norlund sequence spaces, Tamkang J. Math., 9 (1978), 269-274.
  • [31] A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud., 85 (1984).
Year 2016, Volume: 4 Issue: 2, 56 - 69, 01.10.2016

Abstract

References

  • [1] A. Esi, Some new sequence spaces de ned by Orlicz Functions, Bull. Inst. Math. Acad. Sinica, 27 (1999), 71-76.
  • [2] M. Et and A. Esi, On Kothe-Toeplitz duals of generalized di erence sequence spaces, Bull. Malays. Math. Sci. Soc., 23 (2000), 25-32.
  • [3] A. Esi, B. C. Tripathy and B. Sharma, On some new type generalized difference sequence spaces, Math. Slovaca, 57 (2007), 1-8.
  • [4] A. Esi and Isik Mahmut, Some generalized difference sequence spaces, Thai J. Math., 3 (2005) 241-247.
  • [5] M. Et and R. Colak, On some generalized sequence spaces, Soochow. J. Math., 21 (1995), 377-386.
  • [6] K. G. Gross Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180 (1993), 223- 238.
  • [7] E. Herawati, M. Mursaleen and I. E. Supama Wijayanti, Order matrix transformations on some Banach lattice valued sequence spaces, Appl. Math. Comput., 247 (2014), 1122-1128.
  • [8] H. Kzmaz, On certain sequence spaces, Canad. Math-Bull., 24 (1981), 169-176.
  • [9] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
  • [10] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc., 68 (1970), 99-104.
  • [11] I. J. Maddox, Elements of Functional Analysis, The University Press, Cambridge, 1988.
  • [12] I. J. Maddox, Paranormed sequence spaces generated by in nite matrices, Proc. Camb. Phil. Soc., 64 (1968), 335-340.
  • [13] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18 (1967), 345-355.
  • [14] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
  • [15] M. Mursaleen, K. Raj and S. K.Sharma, Some spaces of difference sequences and Lacunary statistical convergence in n-normed spaces de ned by a sequence of Orlicz functions, Miskolc Math. Notes, 16 (2015), 283-304.
  • [16] M. Mursaleen, S. K. Sharma, A. Kilicman, Sequence spaces de ned by Musielak-Orlicz function over n-normed spaces, Abstr. Appl. Anal., 27 (2013), 47-58.
  • [17] M. Mursaleen, S. K Sharma, A. Kilicman, New class of generalized seminormed sequence spaces, Abstr. Appl. Anal., 2014, Article ID 461081, 7 pages.
  • [18] M. Mursaleen, S. K Sharma, S. A. Mohiuddine and A. Kilicman, New difference sequence spaces de ned by Musielak-Orlicz function, Abstr. Appl. Anal. 2014.
  • [19] J. Musielak, Orlicz spaces and modular spaces, Lecture notes in Mathematics, 1034 (1983). [20] S. A. Mohiuddine, K. Raj and A. Alotaibi, Generalized spaces of double sequences for Orlicz functions and bounded regular matrices over n-normed spaces, J. Inequal. Appl., 2014, 2014:332.
  • [21] S. A. Mohiuddine, M. Mursaleen and A. Alotaibi, Compact operators for almost conservative and strongly conservative matrices, Abstr. Appl. Anal. 2014, Art. ID 567317, 6 pp.
  • [22] G. M. Petersen, Regular matrix transformations, McGraw-Hill, London, 1966.
  • [23] K. Raj, S. K. Sharma and A. Gupta, Some difference paranormed sequence spaces over n-normed spaces de ned by Musielak-Orlicz function, Kyungpook Math. J., 54 (2014), 73-86.
  • [24] K. Raj and S.K.Sharma, Some seminormed diffrence sequence spaces de ned by Musielak Orlicz function over n-normed spaces, J. Math. Appl., 38 (2015), 125-141.
  • [25] K. Raj and M. Arsalan Khan, Some spaces of double sequences their duals and matrix transformations , Azerb. J. Math., 6 (2016), 19pp.
  • [26] N. A. Sheikh and A. H. Ganie, A new paranormed sequence space and some matrix transformations , Acta Math. Acad. Paedago. Nyregy., 28 (2012), 47-58.
  • [27] N. A. Sheikh and A. H. Ganie, On the sequence space l(p, s) and some matrix transformations , Nonlinear func. Anal. Appl., 18 (2013), 253-258.
  • [28] B. C. Tripathy, A. Esi and T. Balakrushna, On a new type of generalized difference Cesaro sequence spaces, Soochow J. Math., 31 (2005), 333-340.
  • [29] O. Toeplitz, Uberallegemeine Lineare mittelbildungen, Prace Math. Fiz., 22 (1991), 113-119.
  • [30] C. S. Wang, On Norlund sequence spaces, Tamkang J. Math., 9 (1978), 269-274.
  • [31] A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud., 85 (1984).
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kuldip Raj

Renu Anand This is me

Publication Date October 1, 2016
Submission Date November 19, 2015
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Raj, K., & Anand, R. (2016). ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ FUNCTION. Konuralp Journal of Mathematics, 4(2), 56-69.
AMA Raj K, Anand R. ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ FUNCTION. Konuralp J. Math. October 2016;4(2):56-69.
Chicago Raj, Kuldip, and Renu Anand. “ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ FUNCTION”. Konuralp Journal of Mathematics 4, no. 2 (October 2016): 56-69.
EndNote Raj K, Anand R (October 1, 2016) ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ FUNCTION. Konuralp Journal of Mathematics 4 2 56–69.
IEEE K. Raj and R. Anand, “ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ FUNCTION”, Konuralp J. Math., vol. 4, no. 2, pp. 56–69, 2016.
ISNAD Raj, Kuldip - Anand, Renu. “ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ FUNCTION”. Konuralp Journal of Mathematics 4/2 (October 2016), 56-69.
JAMA Raj K, Anand R. ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ FUNCTION. Konuralp J. Math. 2016;4:56–69.
MLA Raj, Kuldip and Renu Anand. “ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ FUNCTION”. Konuralp Journal of Mathematics, vol. 4, no. 2, 2016, pp. 56-69.
Vancouver Raj K, Anand R. ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ FUNCTION. Konuralp J. Math. 2016;4(2):56-69.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.