Research Article
BibTex RIS Cite

ON THE PARANORMED TAYLOR SEQUENCE SPACES

Year 2016, Volume: 4 Issue: 2, 132 - 148, 01.10.2016

Abstract

In this paper, the sequence spaces $t^r_0(p)$, $t^r_c(p)$ and $t^r(p)$ of non-absolute type which are the generalization of the Maddox \ sequence spaces have \ been introduced and it is proved that the spaces $t^r_0(p)$, $t^r_c(p)$ and $t^r(p)$ are linearly isomorphic to spaces $c_0(p)$, $c(p)$ and $\ell(p)$, respectively. Furthermore, the $\alpha-,\beta-$ and $\gamma-$duals of the spaces $t^r_0(p)$, $t^r_c(p)$ and $t^r(p)$ have been computed and their bases have been constructed and some topological properties of these spaces have been investigated. Besides this, the \ class of matrices $(t^r_0(p) : \mu)$ has been characterized, where $\mu$ is one of the sequence spaces $\ell_\infty,c$ and $c_0$ and derives the other characterizations for the special cases of $\mu$.

References

  • [1] B. Altay, F. Basar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 26, 701-715 (2002).
  • [2] B. Altay, F. Basar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30, 591-608 (2006).
  • [3] F. Basar, B. Altay, Matrix mappings on the space $bs(p)$ and its $\alpha-, \beta-$ and $\gamma-$duals, Aligarh Bull. Math., 21(1), 79-91 (2002).
  • [4] F. Basar, In nite matrices and almost boundedness, Boll. Un. Mat. Ital., 6(7), 395-402 (1992).
  • [5] B. Choudhary, S. K. Mishra, On Kothe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24(5), 291-301 (1993).
  • [6] S. Demiriz, C. Cakan, On Some New Paranormed Euler Sequence Spaces and Euler Core, Acta Math. Sin.(Eng. Ser.), 26(7), 1207-1222 (2010).
  • [7] K. G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox. J. Math. Anal. Appl., 180, 223-238 (1993).
  • [8] A. Jarrah and E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo, 52(2), 177-191 (1990).
  • [9] M. Kirisci, On the Taylor sequence spaces of nonabsulate type which include the spaces c0 and c. J. Math. Anal., 6(2), 22-35 (2015).
  • [10] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc.Camb. Phil. Soc., 68, 99-104 (1970).
  • [11] I.J. Maddox, Elements of Functional Analysis, second ed., The University Press, Cambridge, 1988.
  • [12] I. J. Maddox, Paranormed sequence spaces generated by in nite matrices, Proc. Camb. Phios. Soc., 64, 335-340 (1968).
  • [13] H. Nakano, Modulared sequence spaces, Proc. Jpn. Acad., 27(2), 508-512 (1951).
  • [14] S. Simons, The sequence spaces `(pv) and m(pv). Proc. London Math. Soc., 15(3), 422-436 (1965).
Year 2016, Volume: 4 Issue: 2, 132 - 148, 01.10.2016

Abstract

References

  • [1] B. Altay, F. Basar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 26, 701-715 (2002).
  • [2] B. Altay, F. Basar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30, 591-608 (2006).
  • [3] F. Basar, B. Altay, Matrix mappings on the space $bs(p)$ and its $\alpha-, \beta-$ and $\gamma-$duals, Aligarh Bull. Math., 21(1), 79-91 (2002).
  • [4] F. Basar, In nite matrices and almost boundedness, Boll. Un. Mat. Ital., 6(7), 395-402 (1992).
  • [5] B. Choudhary, S. K. Mishra, On Kothe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24(5), 291-301 (1993).
  • [6] S. Demiriz, C. Cakan, On Some New Paranormed Euler Sequence Spaces and Euler Core, Acta Math. Sin.(Eng. Ser.), 26(7), 1207-1222 (2010).
  • [7] K. G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox. J. Math. Anal. Appl., 180, 223-238 (1993).
  • [8] A. Jarrah and E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo, 52(2), 177-191 (1990).
  • [9] M. Kirisci, On the Taylor sequence spaces of nonabsulate type which include the spaces c0 and c. J. Math. Anal., 6(2), 22-35 (2015).
  • [10] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc.Camb. Phil. Soc., 68, 99-104 (1970).
  • [11] I.J. Maddox, Elements of Functional Analysis, second ed., The University Press, Cambridge, 1988.
  • [12] I. J. Maddox, Paranormed sequence spaces generated by in nite matrices, Proc. Camb. Phios. Soc., 64, 335-340 (1968).
  • [13] H. Nakano, Modulared sequence spaces, Proc. Jpn. Acad., 27(2), 508-512 (1951).
  • [14] S. Simons, The sequence spaces `(pv) and m(pv). Proc. London Math. Soc., 15(3), 422-436 (1965).
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

HACER BILGIN Ellıdokuzoglu

SERKAN Demırız

Publication Date October 1, 2016
Submission Date May 4, 2015
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Ellıdokuzoglu, H. B., & Demırız, S. (2016). ON THE PARANORMED TAYLOR SEQUENCE SPACES. Konuralp Journal of Mathematics, 4(2), 132-148.
AMA Ellıdokuzoglu HB, Demırız S. ON THE PARANORMED TAYLOR SEQUENCE SPACES. Konuralp J. Math. October 2016;4(2):132-148.
Chicago Ellıdokuzoglu, HACER BILGIN, and SERKAN Demırız. “ON THE PARANORMED TAYLOR SEQUENCE SPACES”. Konuralp Journal of Mathematics 4, no. 2 (October 2016): 132-48.
EndNote Ellıdokuzoglu HB, Demırız S (October 1, 2016) ON THE PARANORMED TAYLOR SEQUENCE SPACES. Konuralp Journal of Mathematics 4 2 132–148.
IEEE H. B. Ellıdokuzoglu and S. Demırız, “ON THE PARANORMED TAYLOR SEQUENCE SPACES”, Konuralp J. Math., vol. 4, no. 2, pp. 132–148, 2016.
ISNAD Ellıdokuzoglu, HACER BILGIN - Demırız, SERKAN. “ON THE PARANORMED TAYLOR SEQUENCE SPACES”. Konuralp Journal of Mathematics 4/2 (October 2016), 132-148.
JAMA Ellıdokuzoglu HB, Demırız S. ON THE PARANORMED TAYLOR SEQUENCE SPACES. Konuralp J. Math. 2016;4:132–148.
MLA Ellıdokuzoglu, HACER BILGIN and SERKAN Demırız. “ON THE PARANORMED TAYLOR SEQUENCE SPACES”. Konuralp Journal of Mathematics, vol. 4, no. 2, 2016, pp. 132-48.
Vancouver Ellıdokuzoglu HB, Demırız S. ON THE PARANORMED TAYLOR SEQUENCE SPACES. Konuralp J. Math. 2016;4(2):132-48.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.