Research Article
BibTex RIS Cite

COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL MONOMIALS DEPENDING UPON THEIR RELATIVE ORDERS, RELATIVE TYPE AND RELATIVE WEAK TYPE

Year 2016, Volume: 4 Issue: 2, 230 - 246, 01.10.2016

Abstract

In this paper the comparative growth properties of composition of entire and meromorphic functions on the basis of their relative orders (relative lower orders), relative types and relative weak types of di erential monomials generated by entire and meromorphic functions have been investigated.

References

  • [1] Bernal, L., Crecimiento relativo de funciones enteras. Contribucion al estudio de lasfunciones enteras con ndice exponencial nito, Doctoral Dissertation, University of Seville, Spain, 1984.
  • [2] Bernal, L., Orden relative de crecimiento de funciones enteras, Collect. Math., Vol:39 (1988), 209-229.
  • [3] Bergweiler, W., On the Nevanlinna characteristic of a composite function, Complex Vari- ables, Vol:10 (1988), 225-236.
  • [4] Bergweiler, W., On the growth rate of composite meromorphic functions, Complex Variables, Vol:14 (1990), 187-196.
  • [5] Doeringer, W., Exceptional values of di erential polynomials, Paci c J. Math., Vol:98, No.1 (1982), 55-62.
  • [6] Datta, S. K. and Biswas, T., On a result of Bergweiler, International Journal of Pure and Applied Mathematics (IJPAM), Vol:51, No. 1 (2009), 33-37.
  • [7] Datta, S. K. and Jha, A., On the weak type of meromorphic functions, Int. Math. Forum, Vol:4, No.12 (2009), 569-579.
  • [8] Datta, S. K. and Biswas, A., On relative type of entire and meromorphic functions, Advances in Applied Mathematical Analysis, Vol:8, No.2 (2013),63-75.
  • [9] Datta, S. K., Biswas, T. and Biswas, C., Measure of growth ratios of composite entire and meromorphic functions with a focus on relative order, International J. of Math. Sci. & Engg. Appls. (IJMSEA), Vol:8, No. IV (July, 2014), 207-218.
  • [10] Datta, S. K., Biswas, T. and Bhattacharyya, S., On relative order and relative type based growth properties of di erential monomials, Journal of the Indian Math. Soc., Vol. 82, Nos. (3 - 4), (2015), pp. 39{52.
  • [11] Hayman, W. K. Meromorphic Functions, The Clarendon Press, Oxford (1964).
  • [12] Lahiri, I. and Sharma, D. K., Growth of composite entire and meromorphic functions, Indian J. Pure Appl. Math., Vol:26, No.5 (1995), 451-458.
  • [13] Lahiri, B. K. and Banerjee, D., Relative order of entire and meromorphic functions, Proc. Nat. Acad. Sci. India Ser. A., Vol:69(A), No. 3 (1999), 339-354.
  • [14] Roy, C., Some properties of entire functions in one and several complex vaiables, Ph.D. Thesis ( 2010), University of Calcutta.
  • [15] Valiron, G., Lectures on the general theory of integral functions, Chelsea Publishing Company, 1949.
  • [16] Yang, L., Value distribution theory and new research on it, Science Press, Beijing (1982).
  • [17] Yi, H. X., On a result of Singh, Bull. Austral. Math. Soc., Vol:41 (1990), 417-420.
Year 2016, Volume: 4 Issue: 2, 230 - 246, 01.10.2016

Abstract

References

  • [1] Bernal, L., Crecimiento relativo de funciones enteras. Contribucion al estudio de lasfunciones enteras con ndice exponencial nito, Doctoral Dissertation, University of Seville, Spain, 1984.
  • [2] Bernal, L., Orden relative de crecimiento de funciones enteras, Collect. Math., Vol:39 (1988), 209-229.
  • [3] Bergweiler, W., On the Nevanlinna characteristic of a composite function, Complex Vari- ables, Vol:10 (1988), 225-236.
  • [4] Bergweiler, W., On the growth rate of composite meromorphic functions, Complex Variables, Vol:14 (1990), 187-196.
  • [5] Doeringer, W., Exceptional values of di erential polynomials, Paci c J. Math., Vol:98, No.1 (1982), 55-62.
  • [6] Datta, S. K. and Biswas, T., On a result of Bergweiler, International Journal of Pure and Applied Mathematics (IJPAM), Vol:51, No. 1 (2009), 33-37.
  • [7] Datta, S. K. and Jha, A., On the weak type of meromorphic functions, Int. Math. Forum, Vol:4, No.12 (2009), 569-579.
  • [8] Datta, S. K. and Biswas, A., On relative type of entire and meromorphic functions, Advances in Applied Mathematical Analysis, Vol:8, No.2 (2013),63-75.
  • [9] Datta, S. K., Biswas, T. and Biswas, C., Measure of growth ratios of composite entire and meromorphic functions with a focus on relative order, International J. of Math. Sci. & Engg. Appls. (IJMSEA), Vol:8, No. IV (July, 2014), 207-218.
  • [10] Datta, S. K., Biswas, T. and Bhattacharyya, S., On relative order and relative type based growth properties of di erential monomials, Journal of the Indian Math. Soc., Vol. 82, Nos. (3 - 4), (2015), pp. 39{52.
  • [11] Hayman, W. K. Meromorphic Functions, The Clarendon Press, Oxford (1964).
  • [12] Lahiri, I. and Sharma, D. K., Growth of composite entire and meromorphic functions, Indian J. Pure Appl. Math., Vol:26, No.5 (1995), 451-458.
  • [13] Lahiri, B. K. and Banerjee, D., Relative order of entire and meromorphic functions, Proc. Nat. Acad. Sci. India Ser. A., Vol:69(A), No. 3 (1999), 339-354.
  • [14] Roy, C., Some properties of entire functions in one and several complex vaiables, Ph.D. Thesis ( 2010), University of Calcutta.
  • [15] Valiron, G., Lectures on the general theory of integral functions, Chelsea Publishing Company, 1949.
  • [16] Yang, L., Value distribution theory and new research on it, Science Press, Beijing (1982).
  • [17] Yi, H. X., On a result of Singh, Bull. Austral. Math. Soc., Vol:41 (1990), 417-420.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sanjib Kumar Datta This is me

Tanmay Bıswas This is me

Publication Date October 1, 2016
Submission Date July 10, 2014
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Datta, S. K., & Bıswas, T. (2016). COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL MONOMIALS DEPENDING UPON THEIR RELATIVE ORDERS, RELATIVE TYPE AND RELATIVE WEAK TYPE. Konuralp Journal of Mathematics, 4(2), 230-246.
AMA Datta SK, Bıswas T. COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL MONOMIALS DEPENDING UPON THEIR RELATIVE ORDERS, RELATIVE TYPE AND RELATIVE WEAK TYPE. Konuralp J. Math. October 2016;4(2):230-246.
Chicago Datta, Sanjib Kumar, and Tanmay Bıswas. “COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL MONOMIALS DEPENDING UPON THEIR RELATIVE ORDERS, RELATIVE TYPE AND RELATIVE WEAK TYPE”. Konuralp Journal of Mathematics 4, no. 2 (October 2016): 230-46.
EndNote Datta SK, Bıswas T (October 1, 2016) COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL MONOMIALS DEPENDING UPON THEIR RELATIVE ORDERS, RELATIVE TYPE AND RELATIVE WEAK TYPE. Konuralp Journal of Mathematics 4 2 230–246.
IEEE S. K. Datta and T. Bıswas, “COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL MONOMIALS DEPENDING UPON THEIR RELATIVE ORDERS, RELATIVE TYPE AND RELATIVE WEAK TYPE”, Konuralp J. Math., vol. 4, no. 2, pp. 230–246, 2016.
ISNAD Datta, Sanjib Kumar - Bıswas, Tanmay. “COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL MONOMIALS DEPENDING UPON THEIR RELATIVE ORDERS, RELATIVE TYPE AND RELATIVE WEAK TYPE”. Konuralp Journal of Mathematics 4/2 (October 2016), 230-246.
JAMA Datta SK, Bıswas T. COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL MONOMIALS DEPENDING UPON THEIR RELATIVE ORDERS, RELATIVE TYPE AND RELATIVE WEAK TYPE. Konuralp J. Math. 2016;4:230–246.
MLA Datta, Sanjib Kumar and Tanmay Bıswas. “COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL MONOMIALS DEPENDING UPON THEIR RELATIVE ORDERS, RELATIVE TYPE AND RELATIVE WEAK TYPE”. Konuralp Journal of Mathematics, vol. 4, no. 2, 2016, pp. 230-46.
Vancouver Datta SK, Bıswas T. COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL MONOMIALS DEPENDING UPON THEIR RELATIVE ORDERS, RELATIVE TYPE AND RELATIVE WEAK TYPE. Konuralp J. Math. 2016;4(2):230-46.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.