New generalizations of Sherman's inequality for convex functions of higher order are obtained by using Hermite's interpolating polynomials and Green's function. The Ostrowski and Gruss type bounds for the identity related to generalized Sherman's inequality are established. Some applications are discussed.
[1] M. Adil Khan, N. Latif, I. Peric and J. Pecaric, On Sapogov's extension of Cebysev's inequality,
Thai J. Math., 10(2) (2012), 617-633.
[2] M. Adil Khan, Naveed Latif, I. Peric and J. Pecaric, On majorization for matrices, Math.
Balkanica, 27 (2013), 13-19.
[3] M. Adil Khan, M. Niezgoda and J. Pecaric, On a renement of the majorization type inequality,
Demonstratio Math., 44(1) (2011), 49-57.
[4] M. Adil Khan, N. Latif and J. Pecaric, Generalization of majorization theorem, J. Math.
Inequal., 9(3) (2015), 847-872.
[5] M. Adil Khan, Sadia Khalid and J. Pecaric, Renements of some majorization type inequalities,
J. Math. Inequal.,7(1) (2013), 73-92.
[6] R. P. Agarwal, S. Ivelic Bradanovic and J. Pecaric, Generalizations of Sherman's inequality
by Lidstone's interpolating polynomial, J. Inequal. Appl. 6, 2016 (2016)
[7] R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and their
Applications, Kluwer Academic Publisher, Dordrecht, 1993.
[8] P. R. Beesack, On the Green's function of an N-point boundary value problem, Pacic J.
Math. 12 (1962), 801-812. Kluwer Academic Publishers, 1993.
[9] P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Cebysev functional
and applications, J. Math. Inequal. 8 (1) (2014), 159-170.
[10] S. Ivelic Bradanovic and J. Pecaric, Generalizations of Sherman's inequality, Per. Math. Hung.
to appear.
[11] J. Jaksetic and J. Pecaric, Exponential Convexity Method, J. Convex Anal. 20 (2013), No.
1, 181-197.
[12] N. Latif, J. Pecaric and I. Peric, On Majorization, Favard and Berwald's inequalities, Annals
of Functional Analysis, 2 (2011), no. 1, 31-50.
[13] A. Yu. Levin, Some problems bearing on the oscillation of solutions of linear dierential
equations, Soviet Math. Dokl., 4 (1963), 121-124.
[14] J. Pecaric and J. Peric, Improvement of the Giaccardi and the Petrovic Inequality and Related
Stolarsky Type Means, A. Univ. Craiova Ser. Mat. Inform., 39 (1) (2012), 65-75.
[15] J. E. Pecaric, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical
Applications, Academic Press, Inc.
[16] S. Sherman, On a theorem of Hardy, Littlewood, Polya and Blackwell, Proc. Nat. Acad. Sci.
USA, 37 (1) (1957), 826-831.
[17] D. V. Widder: Completely convex function and Lidstone series, Trans. Am. Math. Soc. 51
(1942), 387-398.
Year 2016,
Volume: 4 Issue: 2, 255 - 270, 01.10.2016
[1] M. Adil Khan, N. Latif, I. Peric and J. Pecaric, On Sapogov's extension of Cebysev's inequality,
Thai J. Math., 10(2) (2012), 617-633.
[2] M. Adil Khan, Naveed Latif, I. Peric and J. Pecaric, On majorization for matrices, Math.
Balkanica, 27 (2013), 13-19.
[3] M. Adil Khan, M. Niezgoda and J. Pecaric, On a renement of the majorization type inequality,
Demonstratio Math., 44(1) (2011), 49-57.
[4] M. Adil Khan, N. Latif and J. Pecaric, Generalization of majorization theorem, J. Math.
Inequal., 9(3) (2015), 847-872.
[5] M. Adil Khan, Sadia Khalid and J. Pecaric, Renements of some majorization type inequalities,
J. Math. Inequal.,7(1) (2013), 73-92.
[6] R. P. Agarwal, S. Ivelic Bradanovic and J. Pecaric, Generalizations of Sherman's inequality
by Lidstone's interpolating polynomial, J. Inequal. Appl. 6, 2016 (2016)
[7] R. P. Agarwal and P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and their
Applications, Kluwer Academic Publisher, Dordrecht, 1993.
[8] P. R. Beesack, On the Green's function of an N-point boundary value problem, Pacic J.
Math. 12 (1962), 801-812. Kluwer Academic Publishers, 1993.
[9] P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Cebysev functional
and applications, J. Math. Inequal. 8 (1) (2014), 159-170.
[10] S. Ivelic Bradanovic and J. Pecaric, Generalizations of Sherman's inequality, Per. Math. Hung.
to appear.
[11] J. Jaksetic and J. Pecaric, Exponential Convexity Method, J. Convex Anal. 20 (2013), No.
1, 181-197.
[12] N. Latif, J. Pecaric and I. Peric, On Majorization, Favard and Berwald's inequalities, Annals
of Functional Analysis, 2 (2011), no. 1, 31-50.
[13] A. Yu. Levin, Some problems bearing on the oscillation of solutions of linear dierential
equations, Soviet Math. Dokl., 4 (1963), 121-124.
[14] J. Pecaric and J. Peric, Improvement of the Giaccardi and the Petrovic Inequality and Related
Stolarsky Type Means, A. Univ. Craiova Ser. Mat. Inform., 39 (1) (2012), 65-75.
[15] J. E. Pecaric, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical
Applications, Academic Press, Inc.
[16] S. Sherman, On a theorem of Hardy, Littlewood, Polya and Blackwell, Proc. Nat. Acad. Sci.
USA, 37 (1) (1957), 826-831.
[17] D. V. Widder: Completely convex function and Lidstone series, Trans. Am. Math. Soc. 51
(1942), 387-398.
Khan, M. A., Bradanovıc, S. İ., & Pecarıc, J. (2016). ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS. Konuralp Journal of Mathematics, 4(2), 255-270.
AMA
Khan MA, Bradanovıc Sİ, Pecarıc J. ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS. Konuralp J. Math. October 2016;4(2):255-270.
Chicago
Khan, M. Adil, S. İvelic Bradanovıc, and J. Pecarıc. “ON SHERMAN’S TYPE INEQUALITIES FOR N-CONVEX FUNCTION WITH APPLICATIONS”. Konuralp Journal of Mathematics 4, no. 2 (October 2016): 255-70.
EndNote
Khan MA, Bradanovıc Sİ, Pecarıc J (October 1, 2016) ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS. Konuralp Journal of Mathematics 4 2 255–270.
IEEE
M. A. Khan, S. İ. Bradanovıc, and J. Pecarıc, “ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS”, Konuralp J. Math., vol. 4, no. 2, pp. 255–270, 2016.
ISNAD
Khan, M. Adil et al. “ON SHERMAN’S TYPE INEQUALITIES FOR N-CONVEX FUNCTION WITH APPLICATIONS”. Konuralp Journal of Mathematics 4/2 (October 2016), 255-270.
JAMA
Khan MA, Bradanovıc Sİ, Pecarıc J. ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS. Konuralp J. Math. 2016;4:255–270.
MLA
Khan, M. Adil et al. “ON SHERMAN’S TYPE INEQUALITIES FOR N-CONVEX FUNCTION WITH APPLICATIONS”. Konuralp Journal of Mathematics, vol. 4, no. 2, 2016, pp. 255-70.
Vancouver
Khan MA, Bradanovıc Sİ, Pecarıc J. ON SHERMAN’S TYPE INEQUALITIES FOR n-CONVEX FUNCTION WITH APPLICATIONS. Konuralp J. Math. 2016;4(2):255-70.