Research Article
BibTex RIS Cite

ON PSEUDO-SYMMETRY CURVATURE CONDITIONS OF GENERALIZED $(k,\mu)$-PARACONTACT METRIC MANIFOLDS

Year 2017, Volume: 5 Issue: 2, 239 - 247, 15.10.2017

Abstract

In this paper we investigate Ricci pseudo-symmetric and  Ricci generalized pseudo-symmetric generalized $(k,\mu )$-paracontact metric manifolds. Besides this we characterize generalized $(k,\mu )$-paracontact metric manifolds satisfying the curvature conditions $Q(S,R)=0$ and $Q(S,g)=0$, where $S$, $R$ are the Ricci tensor and curvature tensor respectively. Several corollaries are also obtained.

References

  • [1] Blair, D.E., Koufogiorgos, T. and Papatoniou, B.J., Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91(1995), 189-214.
  • [2] Calvaruso. G., Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55(2011), 697-718.
  • [3] Calvaruso, G. and A. Zaeim, A complete classi cation of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces, J. Geom. Phys, 80(2014), 15-25.
  • [4] Calvaruso, G. and Martin-Molina. V., Paracontact metric structure on the unit tangent sphere bundle, Ann. Math. Pura Appl.194(2015), 1359-1380.
  • [5] Calvaruso, G. and Perrone, A., Ricci solitons in three-dimensional paracontact geometry, J. Geom. Phys, 98(2015), 1-12.
  • [6] Capplelletti-Montano, B., Kupeli Erken, I and Murathan, C., Nullity conditions in paracon- tact geometry, Diff. Geom. Appl. 30(2012), 665-693.
  • [7] Cappelletti-Montano, B., Carriazo, A., Martin-Molina, V., Sasaki-Einstein and paraSasaki- Einstein metics from $(k,\mu )$-structure, J. Geom. Phys, 73(2013), 20-36.
  • [8] Cappelletti-Montano, B. and Di Terlizzi, L., Geometric structure associated to a contact metric $(k,\mu )$-space, Paci c J. Math., 246(2010), 257-292.
  • [9] De, U.C., Han, Y. and Mandal, K., On para-sasakian manifolds satisfying certain Curvature Conditions, Filomat 31(2017), 1941-1947.
  • [10] De, U.C., Deshmukh, S. and Mandal, K., On three-dimensional N(k)-paracontact metric manifolds and Ricci solitons, to appear in Bull. Iranian Math. Soc.
  • [11] De, U.C. and Pathak, G., On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math.,35(2004), 159-165.
  • [12] Jun, J.-B. and Kim, U.-K., On 3-dimensional almost contact metric manifolds, Kyungpook Math. J., 34(1994), 293-301.
  • [13] Kowalczyk, D., On some subclass of semi-symmetric manifolds, Soochow J. Math.,27(2001), 445-461.
  • [14] Kupeli Erken, I., Generalized $(\tilde k\neq-1,\tilde\mu)$-paracontact metric manifolds with $\xi(\tilde\mu)=0,$; Int. Electron. J. Geom., 8(2015), 77-93.
  • [15] Kupeli Erken, I. and Murathan, C., A complete study of three-dimensional paracontact $(k,\mu,\nu)$-spaces, arXiv: 1305.1511.
  • [16] Kaneyuki, S. and Williams, F.L, Almost paracontact and parahodge structure on manifolds, Nagoya Math. J. 99(1985), 173-187.
  • [17] L. Verstraelen, Comments on pseudo-symmetry in sense of R. Deszcz, in: Geometry and Topology of submanifolds, World Sci. Publication. 6(1994), 199-209.
  • [18] Szabo, Z. I., Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$ the local version, J. Diff. Geom. 17(1982), 531-582.
  • [19] Zamkovoy, S., Canonical connection on paracontact manifolds, Ann. Global Anal. Geom. 36(2009), 37-60.
Year 2017, Volume: 5 Issue: 2, 239 - 247, 15.10.2017

Abstract

References

  • [1] Blair, D.E., Koufogiorgos, T. and Papatoniou, B.J., Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91(1995), 189-214.
  • [2] Calvaruso. G., Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55(2011), 697-718.
  • [3] Calvaruso, G. and A. Zaeim, A complete classi cation of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces, J. Geom. Phys, 80(2014), 15-25.
  • [4] Calvaruso, G. and Martin-Molina. V., Paracontact metric structure on the unit tangent sphere bundle, Ann. Math. Pura Appl.194(2015), 1359-1380.
  • [5] Calvaruso, G. and Perrone, A., Ricci solitons in three-dimensional paracontact geometry, J. Geom. Phys, 98(2015), 1-12.
  • [6] Capplelletti-Montano, B., Kupeli Erken, I and Murathan, C., Nullity conditions in paracon- tact geometry, Diff. Geom. Appl. 30(2012), 665-693.
  • [7] Cappelletti-Montano, B., Carriazo, A., Martin-Molina, V., Sasaki-Einstein and paraSasaki- Einstein metics from $(k,\mu )$-structure, J. Geom. Phys, 73(2013), 20-36.
  • [8] Cappelletti-Montano, B. and Di Terlizzi, L., Geometric structure associated to a contact metric $(k,\mu )$-space, Paci c J. Math., 246(2010), 257-292.
  • [9] De, U.C., Han, Y. and Mandal, K., On para-sasakian manifolds satisfying certain Curvature Conditions, Filomat 31(2017), 1941-1947.
  • [10] De, U.C., Deshmukh, S. and Mandal, K., On three-dimensional N(k)-paracontact metric manifolds and Ricci solitons, to appear in Bull. Iranian Math. Soc.
  • [11] De, U.C. and Pathak, G., On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math.,35(2004), 159-165.
  • [12] Jun, J.-B. and Kim, U.-K., On 3-dimensional almost contact metric manifolds, Kyungpook Math. J., 34(1994), 293-301.
  • [13] Kowalczyk, D., On some subclass of semi-symmetric manifolds, Soochow J. Math.,27(2001), 445-461.
  • [14] Kupeli Erken, I., Generalized $(\tilde k\neq-1,\tilde\mu)$-paracontact metric manifolds with $\xi(\tilde\mu)=0,$; Int. Electron. J. Geom., 8(2015), 77-93.
  • [15] Kupeli Erken, I. and Murathan, C., A complete study of three-dimensional paracontact $(k,\mu,\nu)$-spaces, arXiv: 1305.1511.
  • [16] Kaneyuki, S. and Williams, F.L, Almost paracontact and parahodge structure on manifolds, Nagoya Math. J. 99(1985), 173-187.
  • [17] L. Verstraelen, Comments on pseudo-symmetry in sense of R. Deszcz, in: Geometry and Topology of submanifolds, World Sci. Publication. 6(1994), 199-209.
  • [18] Szabo, Z. I., Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$ the local version, J. Diff. Geom. 17(1982), 531-582.
  • [19] Zamkovoy, S., Canonical connection on paracontact manifolds, Ann. Global Anal. Geom. 36(2009), 37-60.
There are 19 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Sourav Makhal This is me

U. C. De

Publication Date October 15, 2017
Submission Date July 19, 2017
Acceptance Date October 4, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Makhal, S., & De, U. C. (2017). ON PSEUDO-SYMMETRY CURVATURE CONDITIONS OF GENERALIZED $(k,\mu)$-PARACONTACT METRIC MANIFOLDS. Konuralp Journal of Mathematics, 5(2), 239-247.
AMA Makhal S, De UC. ON PSEUDO-SYMMETRY CURVATURE CONDITIONS OF GENERALIZED $(k,\mu)$-PARACONTACT METRIC MANIFOLDS. Konuralp J. Math. October 2017;5(2):239-247.
Chicago Makhal, Sourav, and U. C. De. “ON PSEUDO-SYMMETRY CURVATURE CONDITIONS OF GENERALIZED $(k,\mu)$-PARACONTACT METRIC MANIFOLDS”. Konuralp Journal of Mathematics 5, no. 2 (October 2017): 239-47.
EndNote Makhal S, De UC (October 1, 2017) ON PSEUDO-SYMMETRY CURVATURE CONDITIONS OF GENERALIZED $(k,\mu)$-PARACONTACT METRIC MANIFOLDS. Konuralp Journal of Mathematics 5 2 239–247.
IEEE S. Makhal and U. C. De, “ON PSEUDO-SYMMETRY CURVATURE CONDITIONS OF GENERALIZED $(k,\mu)$-PARACONTACT METRIC MANIFOLDS”, Konuralp J. Math., vol. 5, no. 2, pp. 239–247, 2017.
ISNAD Makhal, Sourav - De, U. C. “ON PSEUDO-SYMMETRY CURVATURE CONDITIONS OF GENERALIZED $(k,\mu)$-PARACONTACT METRIC MANIFOLDS”. Konuralp Journal of Mathematics 5/2 (October 2017), 239-247.
JAMA Makhal S, De UC. ON PSEUDO-SYMMETRY CURVATURE CONDITIONS OF GENERALIZED $(k,\mu)$-PARACONTACT METRIC MANIFOLDS. Konuralp J. Math. 2017;5:239–247.
MLA Makhal, Sourav and U. C. De. “ON PSEUDO-SYMMETRY CURVATURE CONDITIONS OF GENERALIZED $(k,\mu)$-PARACONTACT METRIC MANIFOLDS”. Konuralp Journal of Mathematics, vol. 5, no. 2, 2017, pp. 239-47.
Vancouver Makhal S, De UC. ON PSEUDO-SYMMETRY CURVATURE CONDITIONS OF GENERALIZED $(k,\mu)$-PARACONTACT METRIC MANIFOLDS. Konuralp J. Math. 2017;5(2):239-47.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.