Research Article
BibTex RIS Cite
Year 2017, Volume: 5 Issue: 2, 87 - 95, 15.10.2017

Abstract

References

  • [1] Liu, S.-J. , Lin, S.-D., Srivastava, H.M. and Wong, M.-M. , Bilateral generating functions for the Erkus-Srivastava polynomials and the generalized Lauricella functions, App. Mathematcis and Comp., 218 (2012) 7685-7693.
  • [2] Srivastava, H. M. and Manocha, H. L. A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984.
  • [3] Srivastava, H. M. and Daoust, M.C. Certain generalized Neumann expansions associated with the Kampe de Feriet function, Nederl. Akad. Westensch. Indag. Math. 31 (1969) 449-457.
  • [4] Erdelyi, A., Magnus, W., Oberhettinger F. and Tricomi, F. G.,Higher Transcendental Functions, Vol. II, McGraw-Hill Book Company, New York, Toronto and London, 1955.
  • [5] Ozmen, N. and Erkus-Duman, E., On the Poisson-Charlier polynomials, Serdica Math. J. 41. (2015), 457-470.
  • [6] Ozmen, N. and Erkus-Duman, E., Some families of generating functions for the generalized Cesaro polynomials, J. Comput. Anal. Appl., 25(4) (2018), 670-683.
  • [7] Chan, W.-C. C. , Chyan, C.-J. and Srivastava, H. M. The Lagrange polynomials in several variables, Integral Transforms Spec. Funct. 12 (2001), 139-148.
  • [8] Erkus, E. and Srivastava, H. M, A uni ed presentation of some families of multivariable polynomials, Integral Transform Spec. Funct. 17 (2006), 267-273.
  • [9] Ozmen, N. and Erkus-Duman, E., Some results for a family of multivariable polynomials, AIP Conference Proceedings, 1558, 1124 (2013).
  • [10] AktaŞ, R. and Erkus-Duman, E., \The Laguerre polynomials in several variables", Mathematica Slovaca, 63(3), (2013), 531-544.
  • [11] Kravchenko, I-V.,Kravchenko, V-V. and Torba, S-M., Solution of parabolic free boundary problems using transmuted heat polynomials, arXiv:1706.07100v2 [math.AP] 19 Jul 2017.

GENERALIZED HEAT POLYNOMIALS

Year 2017, Volume: 5 Issue: 2, 87 - 95, 15.10.2017

Abstract

The present study deals with some new properties for the generalized heat polynomials. The results obtained here include various families of multilinear and multilateral generating functions, miscellaneous properties and also some special cases for these polynomials. In addition, we derive a theorem giving certain families of bilateral generating functions for the generalized Heat polynomials and the generalized Lauricella functions. Finally, we get several interesting results of this theorem.

References

  • [1] Liu, S.-J. , Lin, S.-D., Srivastava, H.M. and Wong, M.-M. , Bilateral generating functions for the Erkus-Srivastava polynomials and the generalized Lauricella functions, App. Mathematcis and Comp., 218 (2012) 7685-7693.
  • [2] Srivastava, H. M. and Manocha, H. L. A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984.
  • [3] Srivastava, H. M. and Daoust, M.C. Certain generalized Neumann expansions associated with the Kampe de Feriet function, Nederl. Akad. Westensch. Indag. Math. 31 (1969) 449-457.
  • [4] Erdelyi, A., Magnus, W., Oberhettinger F. and Tricomi, F. G.,Higher Transcendental Functions, Vol. II, McGraw-Hill Book Company, New York, Toronto and London, 1955.
  • [5] Ozmen, N. and Erkus-Duman, E., On the Poisson-Charlier polynomials, Serdica Math. J. 41. (2015), 457-470.
  • [6] Ozmen, N. and Erkus-Duman, E., Some families of generating functions for the generalized Cesaro polynomials, J. Comput. Anal. Appl., 25(4) (2018), 670-683.
  • [7] Chan, W.-C. C. , Chyan, C.-J. and Srivastava, H. M. The Lagrange polynomials in several variables, Integral Transforms Spec. Funct. 12 (2001), 139-148.
  • [8] Erkus, E. and Srivastava, H. M, A uni ed presentation of some families of multivariable polynomials, Integral Transform Spec. Funct. 17 (2006), 267-273.
  • [9] Ozmen, N. and Erkus-Duman, E., Some results for a family of multivariable polynomials, AIP Conference Proceedings, 1558, 1124 (2013).
  • [10] AktaŞ, R. and Erkus-Duman, E., \The Laguerre polynomials in several variables", Mathematica Slovaca, 63(3), (2013), 531-544.
  • [11] Kravchenko, I-V.,Kravchenko, V-V. and Torba, S-M., Solution of parabolic free boundary problems using transmuted heat polynomials, arXiv:1706.07100v2 [math.AP] 19 Jul 2017.
There are 11 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Nejla Özmen

Publication Date October 15, 2017
Submission Date August 3, 2017
Acceptance Date October 2, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Özmen, N. (2017). GENERALIZED HEAT POLYNOMIALS. Konuralp Journal of Mathematics, 5(2), 87-95.
AMA Özmen N. GENERALIZED HEAT POLYNOMIALS. Konuralp J. Math. October 2017;5(2):87-95.
Chicago Özmen, Nejla. “GENERALIZED HEAT POLYNOMIALS”. Konuralp Journal of Mathematics 5, no. 2 (October 2017): 87-95.
EndNote Özmen N (October 1, 2017) GENERALIZED HEAT POLYNOMIALS. Konuralp Journal of Mathematics 5 2 87–95.
IEEE N. Özmen, “GENERALIZED HEAT POLYNOMIALS”, Konuralp J. Math., vol. 5, no. 2, pp. 87–95, 2017.
ISNAD Özmen, Nejla. “GENERALIZED HEAT POLYNOMIALS”. Konuralp Journal of Mathematics 5/2 (October 2017), 87-95.
JAMA Özmen N. GENERALIZED HEAT POLYNOMIALS. Konuralp J. Math. 2017;5:87–95.
MLA Özmen, Nejla. “GENERALIZED HEAT POLYNOMIALS”. Konuralp Journal of Mathematics, vol. 5, no. 2, 2017, pp. 87-95.
Vancouver Özmen N. GENERALIZED HEAT POLYNOMIALS. Konuralp J. Math. 2017;5(2):87-95.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.