Research Article
BibTex RIS Cite
Year 2017, Volume: 5 Issue: 2, 12 - 18, 02.10.2017

Abstract

References

  • [1] A. Pietsch, Einigie neu Klassen von Kompakten linearen Abbildungen, revue Roum. Math. Pures et Appl., 8, 427-447, 1963.
  • [2] A. Pietsch, s-Numbers of operators in Banach spaces, Studia Mathematica, 51(3), 201-223,1974.
  • [3] B.Carl,A.Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces, Bull.Lond. Math. Soc., 41(2), 332-340, 2009.
  • [4] B.Carl, On s-numbers,quasi s-numbers, s-moduli andWeyl inequalities of operators in Banach spaces, Rev. Mat. Complut., 23, 467-487, 2010.
  • [5] E. Evren Kara, Merve İlkhan, On a new class of s-type operators, Konuralp Journal of Mathematics, 3(1), 1-11, 2015
  • [6] G.Constantin, Operators of Ces-p-type, Rend. Accad.Naz.Lincei Sc. Fis. Mat.Nat., 52, 875-878, 1973
  • [7] I.Gohberg, M.Krein, Introduction to the theory of non-selfadjoint operators, A.M.S. Providence ,1969
  • [8] K.Iseki, A new class of mappings, Stolz mappings,Math.Japon., 3, 275-278, 1974.
  • [9] N.Tita, On Stolz mapping, Math.Japonica, 26(4), 495-496, 1981.
  • [10] N. Tita, Some interpolation properties and tensor product stability of Stolz mappings, International Conf. EITM European Integration Tradition and Modernity,\P. Maior" Univ., Tg. Mures, 666-669, 2007 (CD).
  • [11] N.Tita, On the approximation numbers of the tensor product operator, Analele Stuti ce ale Universitatii "al.I.Cuza" Iasi Tomul, XL,s.l.a., Matematicai, 1994.
  • [12] N.Tita, Some equivalent quasinorms on operator ideals, Spectral and Evolution Problems, Taurida National Univ. Simferopol, 13, 103-108, 2002.
  • [13] N. Tita, Operatori de clasa $\sigma _{p},$, Studii cercet. Mat.23, 467-487, 1971.
  • [14] N.Tita: On a class of $\ell _{\Phi ,\phi }$ operators, Collect. Mat. 32, 275-279, 1981.
  • [15] N. Tita, Ideale de operatori generate de s numere, Ed. Univ. Tranilvania, Brasov, 1998.
  • [16] N.Tita, Cuasinorme echivalente pe spatii de aproximare, Ed. Univ. Tranilvania, Brasov, 2001.
  • [17] N.Tita, A general view on approximation ideals, Functional Analysis and Applications, North Holland Mathematics Studies, 197, 295-300, 2004.
  • [18] Amit Maji, P.D. Srivastava, On operator ideals using weighted Cesaro sequence space, 22(3), 446-452, 2014.
  • [19] N.Salinas, Symmetric norm ideals and relative conjugate ideals,Trans. A.M.S., 188, 213-240, 1974.
  • [20] R. Schatten, Norm ideals of completely continuous operators, Springer Verlag, 1960.
  • [21] Bayram E., Wnuk W., Some Algebra Ideals Of Regular Operators, Commentationes Mathematicae, vol. 53, pp. 227233, 2013.

GENERALIZED STOLZ MAPPINGS

Year 2017, Volume: 5 Issue: 2, 12 - 18, 02.10.2017

Abstract

In this paper, we introduce the class of generalized Stolz mappings. Also we prove that the class of $\ell ^{p}-$-type mappings is included in the class of generalized Stolz mappings and give a new quasinorm equivalent with $\Vert T\Vert_{\phi_{(p)}}$. Finally, we present some properties of the class of generalized Stolz mappings.

References

  • [1] A. Pietsch, Einigie neu Klassen von Kompakten linearen Abbildungen, revue Roum. Math. Pures et Appl., 8, 427-447, 1963.
  • [2] A. Pietsch, s-Numbers of operators in Banach spaces, Studia Mathematica, 51(3), 201-223,1974.
  • [3] B.Carl,A.Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces, Bull.Lond. Math. Soc., 41(2), 332-340, 2009.
  • [4] B.Carl, On s-numbers,quasi s-numbers, s-moduli andWeyl inequalities of operators in Banach spaces, Rev. Mat. Complut., 23, 467-487, 2010.
  • [5] E. Evren Kara, Merve İlkhan, On a new class of s-type operators, Konuralp Journal of Mathematics, 3(1), 1-11, 2015
  • [6] G.Constantin, Operators of Ces-p-type, Rend. Accad.Naz.Lincei Sc. Fis. Mat.Nat., 52, 875-878, 1973
  • [7] I.Gohberg, M.Krein, Introduction to the theory of non-selfadjoint operators, A.M.S. Providence ,1969
  • [8] K.Iseki, A new class of mappings, Stolz mappings,Math.Japon., 3, 275-278, 1974.
  • [9] N.Tita, On Stolz mapping, Math.Japonica, 26(4), 495-496, 1981.
  • [10] N. Tita, Some interpolation properties and tensor product stability of Stolz mappings, International Conf. EITM European Integration Tradition and Modernity,\P. Maior" Univ., Tg. Mures, 666-669, 2007 (CD).
  • [11] N.Tita, On the approximation numbers of the tensor product operator, Analele Stuti ce ale Universitatii "al.I.Cuza" Iasi Tomul, XL,s.l.a., Matematicai, 1994.
  • [12] N.Tita, Some equivalent quasinorms on operator ideals, Spectral and Evolution Problems, Taurida National Univ. Simferopol, 13, 103-108, 2002.
  • [13] N. Tita, Operatori de clasa $\sigma _{p},$, Studii cercet. Mat.23, 467-487, 1971.
  • [14] N.Tita: On a class of $\ell _{\Phi ,\phi }$ operators, Collect. Mat. 32, 275-279, 1981.
  • [15] N. Tita, Ideale de operatori generate de s numere, Ed. Univ. Tranilvania, Brasov, 1998.
  • [16] N.Tita, Cuasinorme echivalente pe spatii de aproximare, Ed. Univ. Tranilvania, Brasov, 2001.
  • [17] N.Tita, A general view on approximation ideals, Functional Analysis and Applications, North Holland Mathematics Studies, 197, 295-300, 2004.
  • [18] Amit Maji, P.D. Srivastava, On operator ideals using weighted Cesaro sequence space, 22(3), 446-452, 2014.
  • [19] N.Salinas, Symmetric norm ideals and relative conjugate ideals,Trans. A.M.S., 188, 213-240, 1974.
  • [20] R. Schatten, Norm ideals of completely continuous operators, Springer Verlag, 1960.
  • [21] Bayram E., Wnuk W., Some Algebra Ideals Of Regular Operators, Commentationes Mathematicae, vol. 53, pp. 227233, 2013.
There are 21 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Pinar Zengin Alp

Merve İlkhan

Emrah Evren Kara

Publication Date October 2, 2017
Submission Date September 7, 2017
Acceptance Date September 22, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Zengin Alp, P., İlkhan, M., & Kara, E. E. (2017). GENERALIZED STOLZ MAPPINGS. Konuralp Journal of Mathematics, 5(2), 12-18.
AMA Zengin Alp P, İlkhan M, Kara EE. GENERALIZED STOLZ MAPPINGS. Konuralp J. Math. October 2017;5(2):12-18.
Chicago Zengin Alp, Pinar, Merve İlkhan, and Emrah Evren Kara. “GENERALIZED STOLZ MAPPINGS”. Konuralp Journal of Mathematics 5, no. 2 (October 2017): 12-18.
EndNote Zengin Alp P, İlkhan M, Kara EE (October 1, 2017) GENERALIZED STOLZ MAPPINGS. Konuralp Journal of Mathematics 5 2 12–18.
IEEE P. Zengin Alp, M. İlkhan, and E. E. Kara, “GENERALIZED STOLZ MAPPINGS”, Konuralp J. Math., vol. 5, no. 2, pp. 12–18, 2017.
ISNAD Zengin Alp, Pinar et al. “GENERALIZED STOLZ MAPPINGS”. Konuralp Journal of Mathematics 5/2 (October 2017), 12-18.
JAMA Zengin Alp P, İlkhan M, Kara EE. GENERALIZED STOLZ MAPPINGS. Konuralp J. Math. 2017;5:12–18.
MLA Zengin Alp, Pinar et al. “GENERALIZED STOLZ MAPPINGS”. Konuralp Journal of Mathematics, vol. 5, no. 2, 2017, pp. 12-18.
Vancouver Zengin Alp P, İlkhan M, Kara EE. GENERALIZED STOLZ MAPPINGS. Konuralp J. Math. 2017;5(2):12-8.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.