Research Article
BibTex RIS Cite

A Further Note on the Graph of Monogenic Semigroups

Year 2018, Volume: 6 Issue: 1, 49 - 53, 15.04.2018

Abstract

In [15], it has been recently defined a new graph $\Gamma ({% \mathcal{S}}_{M})$ on monogenic semigroups ${\mathcal{S}}_{M}$ (with zero) having elements $\{0,x,x^{2},x^{3},\cdots ,x^{n}\}$. The vertices are the non-zero elements $x,x^{2},x^{3},\cdots ,x^{n}$ and, for $1\leq i,j\leq n$, any two distinct vertices $x^{i}$ and $x^{j}$ are adjacent if $x^{i}x^{j}=0$ in ${\mathcal{S}}_{M}$. As a continuing study of [3] and [15], in this paper it will be investigated some special parameters (such as covering number, accessible number, independence number), first and second multiplicative Zagreb indices, and Narumi-Katayama index. Furthermore, it will be presented Laplacian eigenvalue and Laplacian characteristic polynomial for $\Gamma ({\mathcal{S}}_{M})$.

References

  • [1] S. Akbari, H. R. Maimani, S. Yassemi, When a Zero-Divisor Graph is Planar or a Complete r-Partite Graph, J. Algebra, 270 (2003) 169-180.
  • [2] A.S. C¸ evik, Ch. K. Das, I. Gutman, On the Laplacian-Energy-Like Invariant, Linear Algebra and its Applications, Vol 442, 58–68 (2014) DOI: 10.1016/j.laa.2013.05.002.
  • [3] N. Akgunes, K. Ch. Das, A. S. Cevik, Topological indices on a graph of monogenic semigroups, Chapter in the book: Topics in Chemical Graph Theory in Mathematical Chemistry Monographs (Edt. I. Gutman), pp 3-20, No. 16a, Publisher: University of Kragujevac and Faculty of Science Kragujevac, Kragujevac, 2014.
  • [4] D.F. Anderson, P.S. Livingston, The Zero-divisor Graph of Commutative Ring, J. Algebra, 217 (1999) 434-447.
  • [5] D.F. Anderson, A. Badawi, On the Zero-Divisor Graph of a Ring, Comm. Algeb. 36-8 (2008) 3073-3092.
  • [6] D. D. Anderson, M. Naseer, Beck’s coloring of a commutative ring, J. Algebra, 159 (1991) 500-514.
  • [7] D. Babi´c, D.J. Klein, I. Lukovits, S. Nikoli´c, N. Trinajsti´c, Resistance-Distance Matrix: A Computational Algorithm and Its Applications. Int. J. Quant. Chem., 90 (2002), 166-176.
  • [8] I. Beck, Coloring of Commutating Ring, J. Algebra, 116 (1988) 208-226.
  • [9] J. Braun, A. Kerber, M. Meringer, C. Rucker, Similarity of molecular descriptors: The equivalence of Zagreb indices and walk counts, MATCH Commun. Math. Comput.Chem., 54 (2005) 163-176.
  • [10] B. Bollob´as, Modern Graph Theory, Graduate Texts in Mathematics, Springer, 184 (1998).
  • [11] K. Ch. Das, An improved upper bound for Laplacian graph eigenvalues, Linear Alg. Appl., 368 (2003) 269-278.
  • [12] K. Ch. Das, The Laplacian spectrum of a graph, Compt. & Math. Appl., 48-5 (2004) 715-724.
  • [13] K. Ch. Das, I. Gutman, Estimating the Szeged index, Appl. Math. Lett. 22 (2009) 1680-1684.
  • [14] K. Ch. Das, J. M. Guo, Laplacian eigenvalues of the second power of a graph, Disc. Math. 313-5 (2013) 626-634.
  • [15] K.Ch. Das, N. Akgunes, A. S. Cevik, On a graph of monogenic semigroup, J. Ineq. Appl. 2013-44 (2013).
  • [16] F. R. DeMeyer, L. DeMeyer, Zero-Divisor Graphs of Semigroups, J. Algebra, 283 (2005) 190-198.
  • [17] F. R. DeMeyer, T. McKenzie, K. Schneider, The Zero-Divisor Graph of a Commutative Semigroup, Semigroup Forum. 65 (2002) 206-214.
  • [18] M. V. Diudea, Nanomolecules and Nanostructures-Polynomials and Indices, Univ. Kragujevac, Kragujevac, (2010).
  • [19] P. G. Doyle, L. Snell, Random Walks and Electric Networks. Washington, DC: Math. Assoc. Amer., (1984).
  • [20] P. D¨undar, Accessibility number and the neighbor-integrity of generalized Petersen graphs, Neural Network World, 2 (2001) 167-174.
  • [21] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem., 68 (2012) 217-230.
  • [22] J.L. Gross, J. Yellen, Handbook of Graph Theory, Chapman Hall, CRC Press (2004).
  • [23] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst., 1 (2011) 13-19.
  • [24] I. Gutman, K. Ch. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
  • [25] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications I, Univ. Kragujevac, (2010).
  • [26] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications II, Univ. Kragujevac, (2010).
  • [27] I. Gutman, M. Ghorbani, Some properties of the Narumi-Katayama index, Appl. Math. Lett. 25-10 (2012) 1435-1438.
  • [28] I. Gutman, B. Ruˇsˇci´c, N. Trinajsti´c, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 (1975) 3399-3405.
  • [29] I. Gutman, N. Trinajsti´c, Graph theory and molecular orbitals. Total p-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535-538.
  • [30] J. M. Guo, ”A new upper bound for the Laplacian spectral radius of graphs, Lin. Algeb. Appl., 400 (2005), 61-66.
  • [31] H. Hua, A. R. Ashrafi, L. Zhang, More on Zagreb coindices of graphs, Filomat 26-6 (2012) 1215-1225.
  • [32] S. Li, H. Yang, Q. Zhao, Sharp bounds on Zagreb indices of cacti with k pendant vertices, Filomat 26-6 (2012) 1189-1200.
  • [33] R. Merris, A note on Laplacian graph eigenvalues, Lin. Algeb. Appl., 285-1 (1998) 33-35.
  • [34] H. Narumi, M. Katayama, Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ., 16 (1984) 209-214.
  • [35] S. Nikoli´c, G. Kovaˇcevi´c, A. Milicevi´c, N. Trinajsti´c, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003) 113-124.
  • [36] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees. In: Novel molecular structure descriptors-Theory and applications I, I. Gutman, B. Furtula, (eds.) pp. 73-100. Univ. Kragujevac, 2010.
  • [37] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, (2000).
  • [38] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem., 64 (2010) 359-372.
  • [39] S. E. Wright, Lengths of paths and cycles in zero-divisor graphs and digraphs of semi-groups, Comm. Algebra, 35 (2007) 1987-1991.
  • [40] Z. Yarahmadi, A. R. Ashrafi, The Szeged, vertex PI, first and second Zagreb indices of corona product of graphs, Filomat 26-3 (2012) 467-472.
Year 2018, Volume: 6 Issue: 1, 49 - 53, 15.04.2018

Abstract

References

  • [1] S. Akbari, H. R. Maimani, S. Yassemi, When a Zero-Divisor Graph is Planar or a Complete r-Partite Graph, J. Algebra, 270 (2003) 169-180.
  • [2] A.S. C¸ evik, Ch. K. Das, I. Gutman, On the Laplacian-Energy-Like Invariant, Linear Algebra and its Applications, Vol 442, 58–68 (2014) DOI: 10.1016/j.laa.2013.05.002.
  • [3] N. Akgunes, K. Ch. Das, A. S. Cevik, Topological indices on a graph of monogenic semigroups, Chapter in the book: Topics in Chemical Graph Theory in Mathematical Chemistry Monographs (Edt. I. Gutman), pp 3-20, No. 16a, Publisher: University of Kragujevac and Faculty of Science Kragujevac, Kragujevac, 2014.
  • [4] D.F. Anderson, P.S. Livingston, The Zero-divisor Graph of Commutative Ring, J. Algebra, 217 (1999) 434-447.
  • [5] D.F. Anderson, A. Badawi, On the Zero-Divisor Graph of a Ring, Comm. Algeb. 36-8 (2008) 3073-3092.
  • [6] D. D. Anderson, M. Naseer, Beck’s coloring of a commutative ring, J. Algebra, 159 (1991) 500-514.
  • [7] D. Babi´c, D.J. Klein, I. Lukovits, S. Nikoli´c, N. Trinajsti´c, Resistance-Distance Matrix: A Computational Algorithm and Its Applications. Int. J. Quant. Chem., 90 (2002), 166-176.
  • [8] I. Beck, Coloring of Commutating Ring, J. Algebra, 116 (1988) 208-226.
  • [9] J. Braun, A. Kerber, M. Meringer, C. Rucker, Similarity of molecular descriptors: The equivalence of Zagreb indices and walk counts, MATCH Commun. Math. Comput.Chem., 54 (2005) 163-176.
  • [10] B. Bollob´as, Modern Graph Theory, Graduate Texts in Mathematics, Springer, 184 (1998).
  • [11] K. Ch. Das, An improved upper bound for Laplacian graph eigenvalues, Linear Alg. Appl., 368 (2003) 269-278.
  • [12] K. Ch. Das, The Laplacian spectrum of a graph, Compt. & Math. Appl., 48-5 (2004) 715-724.
  • [13] K. Ch. Das, I. Gutman, Estimating the Szeged index, Appl. Math. Lett. 22 (2009) 1680-1684.
  • [14] K. Ch. Das, J. M. Guo, Laplacian eigenvalues of the second power of a graph, Disc. Math. 313-5 (2013) 626-634.
  • [15] K.Ch. Das, N. Akgunes, A. S. Cevik, On a graph of monogenic semigroup, J. Ineq. Appl. 2013-44 (2013).
  • [16] F. R. DeMeyer, L. DeMeyer, Zero-Divisor Graphs of Semigroups, J. Algebra, 283 (2005) 190-198.
  • [17] F. R. DeMeyer, T. McKenzie, K. Schneider, The Zero-Divisor Graph of a Commutative Semigroup, Semigroup Forum. 65 (2002) 206-214.
  • [18] M. V. Diudea, Nanomolecules and Nanostructures-Polynomials and Indices, Univ. Kragujevac, Kragujevac, (2010).
  • [19] P. G. Doyle, L. Snell, Random Walks and Electric Networks. Washington, DC: Math. Assoc. Amer., (1984).
  • [20] P. D¨undar, Accessibility number and the neighbor-integrity of generalized Petersen graphs, Neural Network World, 2 (2001) 167-174.
  • [21] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem., 68 (2012) 217-230.
  • [22] J.L. Gross, J. Yellen, Handbook of Graph Theory, Chapman Hall, CRC Press (2004).
  • [23] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst., 1 (2011) 13-19.
  • [24] I. Gutman, K. Ch. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
  • [25] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications I, Univ. Kragujevac, (2010).
  • [26] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications II, Univ. Kragujevac, (2010).
  • [27] I. Gutman, M. Ghorbani, Some properties of the Narumi-Katayama index, Appl. Math. Lett. 25-10 (2012) 1435-1438.
  • [28] I. Gutman, B. Ruˇsˇci´c, N. Trinajsti´c, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 (1975) 3399-3405.
  • [29] I. Gutman, N. Trinajsti´c, Graph theory and molecular orbitals. Total p-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972) 535-538.
  • [30] J. M. Guo, ”A new upper bound for the Laplacian spectral radius of graphs, Lin. Algeb. Appl., 400 (2005), 61-66.
  • [31] H. Hua, A. R. Ashrafi, L. Zhang, More on Zagreb coindices of graphs, Filomat 26-6 (2012) 1215-1225.
  • [32] S. Li, H. Yang, Q. Zhao, Sharp bounds on Zagreb indices of cacti with k pendant vertices, Filomat 26-6 (2012) 1189-1200.
  • [33] R. Merris, A note on Laplacian graph eigenvalues, Lin. Algeb. Appl., 285-1 (1998) 33-35.
  • [34] H. Narumi, M. Katayama, Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ., 16 (1984) 209-214.
  • [35] S. Nikoli´c, G. Kovaˇcevi´c, A. Milicevi´c, N. Trinajsti´c, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003) 113-124.
  • [36] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees. In: Novel molecular structure descriptors-Theory and applications I, I. Gutman, B. Furtula, (eds.) pp. 73-100. Univ. Kragujevac, 2010.
  • [37] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, (2000).
  • [38] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem., 64 (2010) 359-372.
  • [39] S. E. Wright, Lengths of paths and cycles in zero-divisor graphs and digraphs of semi-groups, Comm. Algebra, 35 (2007) 1987-1991.
  • [40] Z. Yarahmadi, A. R. Ashrafi, The Szeged, vertex PI, first and second Zagreb indices of corona product of graphs, Filomat 26-3 (2012) 467-472.
There are 40 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nihat Akgüneş

Publication Date April 15, 2018
Submission Date March 19, 2018
Acceptance Date April 6, 2018
Published in Issue Year 2018 Volume: 6 Issue: 1

Cite

APA Akgüneş, N. (2018). A Further Note on the Graph of Monogenic Semigroups. Konuralp Journal of Mathematics, 6(1), 49-53.
AMA Akgüneş N. A Further Note on the Graph of Monogenic Semigroups. Konuralp J. Math. April 2018;6(1):49-53.
Chicago Akgüneş, Nihat. “A Further Note on the Graph of Monogenic Semigroups”. Konuralp Journal of Mathematics 6, no. 1 (April 2018): 49-53.
EndNote Akgüneş N (April 1, 2018) A Further Note on the Graph of Monogenic Semigroups. Konuralp Journal of Mathematics 6 1 49–53.
IEEE N. Akgüneş, “A Further Note on the Graph of Monogenic Semigroups”, Konuralp J. Math., vol. 6, no. 1, pp. 49–53, 2018.
ISNAD Akgüneş, Nihat. “A Further Note on the Graph of Monogenic Semigroups”. Konuralp Journal of Mathematics 6/1 (April 2018), 49-53.
JAMA Akgüneş N. A Further Note on the Graph of Monogenic Semigroups. Konuralp J. Math. 2018;6:49–53.
MLA Akgüneş, Nihat. “A Further Note on the Graph of Monogenic Semigroups”. Konuralp Journal of Mathematics, vol. 6, no. 1, 2018, pp. 49-53.
Vancouver Akgüneş N. A Further Note on the Graph of Monogenic Semigroups. Konuralp J. Math. 2018;6(1):49-53.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.