Research Article
BibTex RIS Cite

Injective and Relative Injective Zagreb Indıces of Graphs

Year 2018, Volume: 6 Issue: 1, 117 - 127, 15.04.2018

Abstract

Let $G=(V,E)$ be a graph. The injective neighborhood of a vertex $u\in V(G)$ denoted by $N_{in}(u)$ is defined as $N_{in}(u)=\{v\in V(G):|\Gamma(u,v)|\geq 1\}$, where $|\Gamma(u,v)|$ is the number of common neighborhoods between the vertices $u$ and $v$ in $G$. The cardinality of $N_{in}(u)$ is called the injective degree of the vertex $u$ in $G$ and denoted by $deg_{in}(u)$, \cite{20}. In this paper, we introduce the injective Zagreb indices of a graph $G$ as $M_1^{inj}(G)=\sum_{u\in V(G)}\big[deg_{in}(u)\big]^2$, $M_2^{inj}(G)=\sum_{uv\in E(G)}deg_{in}(u)deg_{in}(v)$, respectively, and the relative injective Zagreb indices as $RM_1^{inj}(G)=\sum_{u\in V(G)}deg_{in}(u)deg(u)$, $RM_2^{inj}(G)=\sum_{uv\in E(G)}\big[deg_{in}(u)deg(v)+deg(u)deg_{in}(v)\big]$, respectively. Some properties of these topological indices are obtained. Exact values for some families of graphs and some graph operations are computed.

References

  • [1] A. Alwardi, B. Arsi´c, I. Gutman, N. D. Soner, The common neighborhood graph and its energy, Iran. J. Math. Sci. Inf. 7(2) (2012) 1-8.
  • [2] Anwar Alwardi, R. Rangarajan and Akram Alqesmah, On the Injective domination of graphs, In communication.
  • [3] A.R. Ashrafi, T. Doˇ sli ´ c, A. Hamzeha, The Zagreb coindices of graph operations, Discrete Applied Mathematics 158 (2010) 1571–1578.
  • [4] J. Braun, A. Kerber, M. Meringer, C. Rucker, Similarity of molecular descriptors: the equivalence of Zagreb indices and walk counts, MATCH Commun. Math. Comput. Chem. 54 (2005) 163–176.
  • [5] T. Doˇ sli ´ c, Vertex-Weighted Wiener Polynomials for Composite Graphs, Ars Math. Contemp. 1 (2008) 66–80.
  • [6] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
  • [7] I. Gutman, N. Trinajstic, Graph theory and molecular orbitals, Total p-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
  • [8] F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
  • [9] M. H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Applied Mathematics 157 (2009) 804–811.
  • [10] Modjtaba Ghorbani, Mohammad A. Hosseinzadeh, A new version of Zagreb indices, Filomat 26 (1) (2012) 93–100.
  • [11] S. Nikoli ´ c, G. Kova ˇ cevi ´ c, A. Mili ˇ cevi ´ c, N. Trinajsti ´ c, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.
  • [12] Rundan Xing, Bo Zhou and Nenad Trinajstic, On Zagreb Eccentricity Indices, Croat. Chem. Acta 84 (4) (2011) 493—497.
  • [13] B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 233–239.
  • [14] B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394 (2004) 93–95.
  • [15] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113–118.
Year 2018, Volume: 6 Issue: 1, 117 - 127, 15.04.2018

Abstract

References

  • [1] A. Alwardi, B. Arsi´c, I. Gutman, N. D. Soner, The common neighborhood graph and its energy, Iran. J. Math. Sci. Inf. 7(2) (2012) 1-8.
  • [2] Anwar Alwardi, R. Rangarajan and Akram Alqesmah, On the Injective domination of graphs, In communication.
  • [3] A.R. Ashrafi, T. Doˇ sli ´ c, A. Hamzeha, The Zagreb coindices of graph operations, Discrete Applied Mathematics 158 (2010) 1571–1578.
  • [4] J. Braun, A. Kerber, M. Meringer, C. Rucker, Similarity of molecular descriptors: the equivalence of Zagreb indices and walk counts, MATCH Commun. Math. Comput. Chem. 54 (2005) 163–176.
  • [5] T. Doˇ sli ´ c, Vertex-Weighted Wiener Polynomials for Composite Graphs, Ars Math. Contemp. 1 (2008) 66–80.
  • [6] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
  • [7] I. Gutman, N. Trinajstic, Graph theory and molecular orbitals, Total p-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
  • [8] F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
  • [9] M. H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Applied Mathematics 157 (2009) 804–811.
  • [10] Modjtaba Ghorbani, Mohammad A. Hosseinzadeh, A new version of Zagreb indices, Filomat 26 (1) (2012) 93–100.
  • [11] S. Nikoli ´ c, G. Kova ˇ cevi ´ c, A. Mili ˇ cevi ´ c, N. Trinajsti ´ c, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.
  • [12] Rundan Xing, Bo Zhou and Nenad Trinajstic, On Zagreb Eccentricity Indices, Croat. Chem. Acta 84 (4) (2011) 493—497.
  • [13] B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 233–239.
  • [14] B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394 (2004) 93–95.
  • [15] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113–118.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Akram Alqesmah

Anwar Alwardi This is me

R. Rangarajan This is me

Publication Date April 15, 2018
Submission Date October 10, 2017
Published in Issue Year 2018 Volume: 6 Issue: 1

Cite

APA Alqesmah, A., Alwardi, A., & Rangarajan, R. (2018). Injective and Relative Injective Zagreb Indıces of Graphs. Konuralp Journal of Mathematics, 6(1), 117-127.
AMA Alqesmah A, Alwardi A, Rangarajan R. Injective and Relative Injective Zagreb Indıces of Graphs. Konuralp J. Math. April 2018;6(1):117-127.
Chicago Alqesmah, Akram, Anwar Alwardi, and R. Rangarajan. “Injective and Relative Injective Zagreb Indıces of Graphs”. Konuralp Journal of Mathematics 6, no. 1 (April 2018): 117-27.
EndNote Alqesmah A, Alwardi A, Rangarajan R (April 1, 2018) Injective and Relative Injective Zagreb Indıces of Graphs. Konuralp Journal of Mathematics 6 1 117–127.
IEEE A. Alqesmah, A. Alwardi, and R. Rangarajan, “Injective and Relative Injective Zagreb Indıces of Graphs”, Konuralp J. Math., vol. 6, no. 1, pp. 117–127, 2018.
ISNAD Alqesmah, Akram et al. “Injective and Relative Injective Zagreb Indıces of Graphs”. Konuralp Journal of Mathematics 6/1 (April 2018), 117-127.
JAMA Alqesmah A, Alwardi A, Rangarajan R. Injective and Relative Injective Zagreb Indıces of Graphs. Konuralp J. Math. 2018;6:117–127.
MLA Alqesmah, Akram et al. “Injective and Relative Injective Zagreb Indıces of Graphs”. Konuralp Journal of Mathematics, vol. 6, no. 1, 2018, pp. 117-2.
Vancouver Alqesmah A, Alwardi A, Rangarajan R. Injective and Relative Injective Zagreb Indıces of Graphs. Konuralp J. Math. 2018;6(1):117-2.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.