Certain class of analytic functions involving Salagean type q-difference operator
Year 2018,
Volume: 6 Issue: 2, 264 - 271, 15.10.2018
Sibel Yalçın
,
Kaliappan Vijaya
Gangadharan Murugusundaramoorthy
Abstract
In
this paper, we define a new subclass of analytic functions with negative coefficients
involving Salagean type q-difference operator and discuss certain characteristic
properties and inclusion relations involving Nδ(e) of this generalized function
class. Further, we determine partial sums results for the function class. The
usefulness of the main result not only provide the unification of the results
discussed in
the literature but also generate certain new results.
References
- [1] S¸ . Altınkaya, and S. Yalc¸ın, Faber polynomial coefficient estimates for a class of bi-univalent functions based on the symmetric q-derivative operator,
Journal of Fractional Calculus and Applications, Vol:8, No:2 (2017), 79-87.
- [2] S¸ . Altınkaya, and S. Yalc¸ın, On the Fekete-Szeg¨o problem for analytic functions defined by using symmetric q-derivative operator, Konuralp Journal of
Mathematics, Vol:5, No:1 (2017), 176-186.
- [3] S. Araci, U. Duran, M. Acikgoz and H. M. Srivastava, A certain (p, q)-derivative operator and associated divided differences, J. Inequal. Appl., (2016)
2016:301.
- [4] Aral, A., Gupta, V. and Agarwal, R. P., Applications of q-calculus in operator theory, Springer, New York, 2013.
- [5] B.A. Frasin, Partial sums of certain analytic and univalent functions, Acta Math. Acad. Paed. Nyir. Vol:21 (2005), 135-145.
- [6] B.A. Frasin and G.Murugusundaramoorthy Partial sums of certain analytic functions, Mathematica,Tome 53, Vol:76, No:2,(2011), 131-142.
- [7] A.W.Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., Vol:8 (1957), 598-601.
- [8] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, Vol:46 (1908), 253-281.
- [9] S. Kanas and D. R˘aducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca, Vol:64, No:5 (2014), 1183-1196.
- [10] Z. Karahuseyin, S¸ . Altınkaya and S. Yalc¸ın, On H3(1) Hankel determinant for univalent functions defined by using qderivative operator, Transylv. J.
Math. Mech., Vol:9, No:1 (2017), 25-33.
- [11] M.Govindaraj, and S. Sivasubramanian, On a class of analytic function related to conic domains involving qcalculus, Analysis Math., Vol:43, No:5
(2017), 475-487.
- [12] G.Murugusundaramoorthy and H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, Journal of Ineql. In Pure and
Appl. Maths., Vol:5, No:2, Art.24 (2004) 1-8.
- [13] S. D. Purohit, and R. K. Raina, Fractional q-calculus and certain subclasses of univalent analytic functions, Mathematica Vol:55(78), No:1 (2013),
62-74.
- [14] T. Rosy, K.G. Subramanian and G. Murugusundaramoorthy, Neighborhoods and partial sums of starlike based on Ruscheweyeh derivatives, J. Ineq.
Pure Appl. Math., Vol:4, No:4, Art. 64 (2003), 1-8.
- [15] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., Vol:81 (1981), 521-527.
- [16] Salagean, G. S., Subclasses of univalent functions, Lecture Notes in Math., Springer-Verlag, 1013 (1983), 362-372.
- [17] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., Vol:51 (1975), 109-116.
- [18] H. Silverman, Partial sums of starlike and convex functions, J.Math Anal.&.Appl., Vol:209 (1997), 221–227.
- [19] T. Sheill-Small, A note on partial sums of convex schlicht functions, Bull. London Math. Soc., Vol:2 (1970), 165-168.
- [20] E.M. Silvia., Partial sums of convex functions of order a, Houston.J.Math., Vol:11, No:3 (1985), 397-404.
- [21] H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci. Vol:5, No:3
(2011), 390-444.
- [22] K.Vijaya, Certain class of analytic functions based on q-difference operator (communicated)
Year 2018,
Volume: 6 Issue: 2, 264 - 271, 15.10.2018
Sibel Yalçın
,
Kaliappan Vijaya
Gangadharan Murugusundaramoorthy
References
- [1] S¸ . Altınkaya, and S. Yalc¸ın, Faber polynomial coefficient estimates for a class of bi-univalent functions based on the symmetric q-derivative operator,
Journal of Fractional Calculus and Applications, Vol:8, No:2 (2017), 79-87.
- [2] S¸ . Altınkaya, and S. Yalc¸ın, On the Fekete-Szeg¨o problem for analytic functions defined by using symmetric q-derivative operator, Konuralp Journal of
Mathematics, Vol:5, No:1 (2017), 176-186.
- [3] S. Araci, U. Duran, M. Acikgoz and H. M. Srivastava, A certain (p, q)-derivative operator and associated divided differences, J. Inequal. Appl., (2016)
2016:301.
- [4] Aral, A., Gupta, V. and Agarwal, R. P., Applications of q-calculus in operator theory, Springer, New York, 2013.
- [5] B.A. Frasin, Partial sums of certain analytic and univalent functions, Acta Math. Acad. Paed. Nyir. Vol:21 (2005), 135-145.
- [6] B.A. Frasin and G.Murugusundaramoorthy Partial sums of certain analytic functions, Mathematica,Tome 53, Vol:76, No:2,(2011), 131-142.
- [7] A.W.Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., Vol:8 (1957), 598-601.
- [8] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, Vol:46 (1908), 253-281.
- [9] S. Kanas and D. R˘aducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca, Vol:64, No:5 (2014), 1183-1196.
- [10] Z. Karahuseyin, S¸ . Altınkaya and S. Yalc¸ın, On H3(1) Hankel determinant for univalent functions defined by using qderivative operator, Transylv. J.
Math. Mech., Vol:9, No:1 (2017), 25-33.
- [11] M.Govindaraj, and S. Sivasubramanian, On a class of analytic function related to conic domains involving qcalculus, Analysis Math., Vol:43, No:5
(2017), 475-487.
- [12] G.Murugusundaramoorthy and H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, Journal of Ineql. In Pure and
Appl. Maths., Vol:5, No:2, Art.24 (2004) 1-8.
- [13] S. D. Purohit, and R. K. Raina, Fractional q-calculus and certain subclasses of univalent analytic functions, Mathematica Vol:55(78), No:1 (2013),
62-74.
- [14] T. Rosy, K.G. Subramanian and G. Murugusundaramoorthy, Neighborhoods and partial sums of starlike based on Ruscheweyeh derivatives, J. Ineq.
Pure Appl. Math., Vol:4, No:4, Art. 64 (2003), 1-8.
- [15] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., Vol:81 (1981), 521-527.
- [16] Salagean, G. S., Subclasses of univalent functions, Lecture Notes in Math., Springer-Verlag, 1013 (1983), 362-372.
- [17] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., Vol:51 (1975), 109-116.
- [18] H. Silverman, Partial sums of starlike and convex functions, J.Math Anal.&.Appl., Vol:209 (1997), 221–227.
- [19] T. Sheill-Small, A note on partial sums of convex schlicht functions, Bull. London Math. Soc., Vol:2 (1970), 165-168.
- [20] E.M. Silvia., Partial sums of convex functions of order a, Houston.J.Math., Vol:11, No:3 (1985), 397-404.
- [21] H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inf. Sci. Vol:5, No:3
(2011), 390-444.
- [22] K.Vijaya, Certain class of analytic functions based on q-difference operator (communicated)