Using the $q$-harmonic analysis associated with the $q$-Dunkl operator, we study three types
of $q$-wavelet packets and their corresponding $q$-wavelet transforms. We give for these wavelet transforms
the related Plancherel and inversion formulas as well as their $q$-scale discrete scaling functions.
[1] N. Bettaibi and R. H. Bettaieb, q-Analogue of the Dunkl transform on the real line, Tamsui Oxford Journal of Mathematical Sciences, 25(2)(2007),
117-205
[2] N. Bettaibi, R. H. Bettaieb and S. Bouaziz, Wavelet transform associated with the q-Dunkl operator, Tamsui Oxford Journal of Mathematical Sciences,
26(1) (2010) 77-101.
[3] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, V. 160, SIAM, Philadelfia, PA, 1992.
[4] A. Fitouhi, N. Bettaibi, Wavelet Transform in Quantum Calculus. J. Non. Math. Phys. 13, (2006), 492-506.
[5] A. Fitouhi and R. H. Bettaieb, Wavelet Transform in the q2-Analogue Fourier Analysis, Math. Sci. Res. J. 12 (2008), no. 9, 202–214.
[6] Grossman A and Morlet J, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984),
723–736.
[7] F. H. Jackson, On a q-Definite Integrals. Quarterly Journal of Pure and Applied Mathematics 41, 1910, 193-203.
[8] T. H. Koornwinder, The continuous Wavelet Transform, Series in Approximations and decompositions, Vol. 1, Wavelets: An Elementary Treatment of
Theory and Applications. Edited by T. H. Koornwinder, World Scientific, 1993; 2748.
[9] T. H. Koornwinder and R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333, 1992, 445-461.
[10] R. L. Rubin, A q2Analogue Operator for q2 analogue Fourier Analysis, J. Math. Analys. App. 212; 1997;571582:
[11] R. L. Rubin, Duhamel Solutions of non-Homogenous q2 Analogue Wave Equations, Proc. of Amer. Maths. Soc. V135; Nr 3; 2007; 777785:
[12] F. Soltani, Fock spaces for the q-Dunkl kernel, The Advances in Pure Mathematics (APM), 2(3) (2012) pp. 169-176 DOI: 10.4236/apm.2012.23023
[13] K. Trim`eche, Generalized harmonic analysis and wavelet packets, Gordon and Breach Science Publishers, 2001.
[14] O’Neill, B., Semi Riemannian geometry with applications to relativity, Academic Press, Inc. New York, 1983.
[15] Hacısalihog˘lu, H. H., Diferensiyel geometri, Cilt I-II, Ankara U¨ niversitesi, Fen Faku¨ltesi Yayınları, 2000.
[16] A. G¨org¨ul¨u and A. C. C¸ ¨oken, The Euler theorem for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclideanspace En+1
1 , Journ. Inst. Math. and Comp. Sci. (Math. Series) Vol:6, No.2 (1993), 161-165.
Year 2018,
Volume: 6 Issue: 2, 311 - 320, 15.10.2018
[1] N. Bettaibi and R. H. Bettaieb, q-Analogue of the Dunkl transform on the real line, Tamsui Oxford Journal of Mathematical Sciences, 25(2)(2007),
117-205
[2] N. Bettaibi, R. H. Bettaieb and S. Bouaziz, Wavelet transform associated with the q-Dunkl operator, Tamsui Oxford Journal of Mathematical Sciences,
26(1) (2010) 77-101.
[3] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, V. 160, SIAM, Philadelfia, PA, 1992.
[4] A. Fitouhi, N. Bettaibi, Wavelet Transform in Quantum Calculus. J. Non. Math. Phys. 13, (2006), 492-506.
[5] A. Fitouhi and R. H. Bettaieb, Wavelet Transform in the q2-Analogue Fourier Analysis, Math. Sci. Res. J. 12 (2008), no. 9, 202–214.
[6] Grossman A and Morlet J, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984),
723–736.
[7] F. H. Jackson, On a q-Definite Integrals. Quarterly Journal of Pure and Applied Mathematics 41, 1910, 193-203.
[8] T. H. Koornwinder, The continuous Wavelet Transform, Series in Approximations and decompositions, Vol. 1, Wavelets: An Elementary Treatment of
Theory and Applications. Edited by T. H. Koornwinder, World Scientific, 1993; 2748.
[9] T. H. Koornwinder and R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333, 1992, 445-461.
[10] R. L. Rubin, A q2Analogue Operator for q2 analogue Fourier Analysis, J. Math. Analys. App. 212; 1997;571582:
[11] R. L. Rubin, Duhamel Solutions of non-Homogenous q2 Analogue Wave Equations, Proc. of Amer. Maths. Soc. V135; Nr 3; 2007; 777785:
[12] F. Soltani, Fock spaces for the q-Dunkl kernel, The Advances in Pure Mathematics (APM), 2(3) (2012) pp. 169-176 DOI: 10.4236/apm.2012.23023
[13] K. Trim`eche, Generalized harmonic analysis and wavelet packets, Gordon and Breach Science Publishers, 2001.
[14] O’Neill, B., Semi Riemannian geometry with applications to relativity, Academic Press, Inc. New York, 1983.
[15] Hacısalihog˘lu, H. H., Diferensiyel geometri, Cilt I-II, Ankara U¨ niversitesi, Fen Faku¨ltesi Yayınları, 2000.
[16] A. G¨org¨ul¨u and A. C. C¸ ¨oken, The Euler theorem for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclideanspace En+1
1 , Journ. Inst. Math. and Comp. Sci. (Math. Series) Vol:6, No.2 (1993), 161-165.