Research Article
BibTex RIS Cite

The $q$-Dunkl wavelet packets

Year 2018, Volume: 6 Issue: 2, 311 - 320, 15.10.2018

Abstract

Using the $q$-harmonic analysis associated with the $q$-Dunkl operator, we study three types
of $q$-wavelet packets and their corresponding $q$-wavelet transforms. We give for these wavelet transforms
the related Plancherel and inversion formulas as well as their $q$-scale discrete scaling functions.




References

  • [1] N. Bettaibi and R. H. Bettaieb, q-Analogue of the Dunkl transform on the real line, Tamsui Oxford Journal of Mathematical Sciences, 25(2)(2007), 117-205
  • [2] N. Bettaibi, R. H. Bettaieb and S. Bouaziz, Wavelet transform associated with the q-Dunkl operator, Tamsui Oxford Journal of Mathematical Sciences, 26(1) (2010) 77-101.
  • [3] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, V. 160, SIAM, Philadelfia, PA, 1992.
  • [4] A. Fitouhi, N. Bettaibi, Wavelet Transform in Quantum Calculus. J. Non. Math. Phys. 13, (2006), 492-506.
  • [5] A. Fitouhi and R. H. Bettaieb, Wavelet Transform in the q2-Analogue Fourier Analysis, Math. Sci. Res. J. 12 (2008), no. 9, 202–214.
  • [6] Grossman A and Morlet J, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984), 723–736.
  • [7] F. H. Jackson, On a q-Definite Integrals. Quarterly Journal of Pure and Applied Mathematics 41, 1910, 193-203.
  • [8] T. H. Koornwinder, The continuous Wavelet Transform, Series in Approximations and decompositions, Vol. 1, Wavelets: An Elementary Treatment of Theory and Applications. Edited by T. H. Koornwinder, World Scientific, 1993; 27􀀀48.
  • [9] T. H. Koornwinder and R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333, 1992, 445-461.
  • [10] R. L. Rubin, A q2􀀀Analogue Operator for q2􀀀 analogue Fourier Analysis, J. Math. Analys. App. 212; 1997;571􀀀582:
  • [11] R. L. Rubin, Duhamel Solutions of non-Homogenous q2􀀀 Analogue Wave Equations, Proc. of Amer. Maths. Soc. V135; Nr 3; 2007; 777􀀀785:
  • [12] F. Soltani, Fock spaces for the q-Dunkl kernel, The Advances in Pure Mathematics (APM), 2(3) (2012) pp. 169-176 DOI: 10.4236/apm.2012.23023
  • [13] K. Trim`eche, Generalized harmonic analysis and wavelet packets, Gordon and Breach Science Publishers, 2001.
  • [14] O’Neill, B., Semi Riemannian geometry with applications to relativity, Academic Press, Inc. New York, 1983.
  • [15] Hacısalihog˘lu, H. H., Diferensiyel geometri, Cilt I-II, Ankara U¨ niversitesi, Fen Faku¨ltesi Yayınları, 2000.
  • [16] A. G¨org¨ul¨u and A. C. C¸ ¨oken, The Euler theorem for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclideanspace En+1 1 , Journ. Inst. Math. and Comp. Sci. (Math. Series) Vol:6, No.2 (1993), 161-165.
Year 2018, Volume: 6 Issue: 2, 311 - 320, 15.10.2018

Abstract

References

  • [1] N. Bettaibi and R. H. Bettaieb, q-Analogue of the Dunkl transform on the real line, Tamsui Oxford Journal of Mathematical Sciences, 25(2)(2007), 117-205
  • [2] N. Bettaibi, R. H. Bettaieb and S. Bouaziz, Wavelet transform associated with the q-Dunkl operator, Tamsui Oxford Journal of Mathematical Sciences, 26(1) (2010) 77-101.
  • [3] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, V. 160, SIAM, Philadelfia, PA, 1992.
  • [4] A. Fitouhi, N. Bettaibi, Wavelet Transform in Quantum Calculus. J. Non. Math. Phys. 13, (2006), 492-506.
  • [5] A. Fitouhi and R. H. Bettaieb, Wavelet Transform in the q2-Analogue Fourier Analysis, Math. Sci. Res. J. 12 (2008), no. 9, 202–214.
  • [6] Grossman A and Morlet J, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984), 723–736.
  • [7] F. H. Jackson, On a q-Definite Integrals. Quarterly Journal of Pure and Applied Mathematics 41, 1910, 193-203.
  • [8] T. H. Koornwinder, The continuous Wavelet Transform, Series in Approximations and decompositions, Vol. 1, Wavelets: An Elementary Treatment of Theory and Applications. Edited by T. H. Koornwinder, World Scientific, 1993; 27􀀀48.
  • [9] T. H. Koornwinder and R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333, 1992, 445-461.
  • [10] R. L. Rubin, A q2􀀀Analogue Operator for q2􀀀 analogue Fourier Analysis, J. Math. Analys. App. 212; 1997;571􀀀582:
  • [11] R. L. Rubin, Duhamel Solutions of non-Homogenous q2􀀀 Analogue Wave Equations, Proc. of Amer. Maths. Soc. V135; Nr 3; 2007; 777􀀀785:
  • [12] F. Soltani, Fock spaces for the q-Dunkl kernel, The Advances in Pure Mathematics (APM), 2(3) (2012) pp. 169-176 DOI: 10.4236/apm.2012.23023
  • [13] K. Trim`eche, Generalized harmonic analysis and wavelet packets, Gordon and Breach Science Publishers, 2001.
  • [14] O’Neill, B., Semi Riemannian geometry with applications to relativity, Academic Press, Inc. New York, 1983.
  • [15] Hacısalihog˘lu, H. H., Diferensiyel geometri, Cilt I-II, Ankara U¨ niversitesi, Fen Faku¨ltesi Yayınları, 2000.
  • [16] A. G¨org¨ul¨u and A. C. C¸ ¨oken, The Euler theorem for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclideanspace En+1 1 , Journ. Inst. Math. and Comp. Sci. (Math. Series) Vol:6, No.2 (1993), 161-165.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Slim Bouaziz

Kamel Mezlini This is me

Ahmed Fitouhi This is me

Publication Date October 15, 2018
Submission Date November 29, 2017
Acceptance Date October 24, 2018
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

APA Bouaziz, S., Mezlini, K., & Fitouhi, A. (2018). The $q$-Dunkl wavelet packets. Konuralp Journal of Mathematics, 6(2), 311-320.
AMA Bouaziz S, Mezlini K, Fitouhi A. The $q$-Dunkl wavelet packets. Konuralp J. Math. October 2018;6(2):311-320.
Chicago Bouaziz, Slim, Kamel Mezlini, and Ahmed Fitouhi. “The $q$-Dunkl Wavelet Packets”. Konuralp Journal of Mathematics 6, no. 2 (October 2018): 311-20.
EndNote Bouaziz S, Mezlini K, Fitouhi A (October 1, 2018) The $q$-Dunkl wavelet packets. Konuralp Journal of Mathematics 6 2 311–320.
IEEE S. Bouaziz, K. Mezlini, and A. Fitouhi, “The $q$-Dunkl wavelet packets”, Konuralp J. Math., vol. 6, no. 2, pp. 311–320, 2018.
ISNAD Bouaziz, Slim et al. “The $q$-Dunkl Wavelet Packets”. Konuralp Journal of Mathematics 6/2 (October 2018), 311-320.
JAMA Bouaziz S, Mezlini K, Fitouhi A. The $q$-Dunkl wavelet packets. Konuralp J. Math. 2018;6:311–320.
MLA Bouaziz, Slim et al. “The $q$-Dunkl Wavelet Packets”. Konuralp Journal of Mathematics, vol. 6, no. 2, 2018, pp. 311-20.
Vancouver Bouaziz S, Mezlini K, Fitouhi A. The $q$-Dunkl wavelet packets. Konuralp J. Math. 2018;6(2):311-20.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.