Research Article
BibTex RIS Cite

Coefficient estimates for a subclass of analytic bi-pseudo-starlike functions of Ma-Minda type

Year 2018, Volume: 6 Issue: 2, 306 - 310, 15.10.2018

Abstract

In this paper, we introduce a new subclass $\mathcal{LB}_{\Sigma }^{\lambda }\left( \varphi \right) $ of analytic and bi-univalent functions in the open unit disk $\mathbb{U}.$ For functions belonging to this class, we obtain initial coefficient bounds.\ Our results generalize and improve some earlier results in the literature

References

  • [1] R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (3) (2012), 344–351.
  • [2] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes¸-Bolyai Math. 31 (2) (1986), 70–77.
  • [3] K.O. Babalola, On l-pseudo-starlike functions, J. Class. Anal. 3 (2) (2013), 137–147.
  • [4] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43 (2) (2013), 59–65.
  • [5] M. C¸ a˘glar, H. Orhan and N. Ya˘gmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27 (7) (2013), 1165–1171.
  • [6] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2 (1) (2013), 49–60.
  • [7] P.L. Duren, Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983.
  • [8] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573.
  • [9] S. Hajiparvaneh and A. Zireh, Coefficient estimates for subclass of analytic and bi-univalent functions defined by differential operator, Tbilisi Math. J. 10 (2) (2017), 91–102.
  • [10] S. Joshi, S. Joshi and H. Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike functions, J. Egyptian Math. Soc. 24 (2016), 522–525.
  • [11] E. Mazi and S¸ . Altınkaya, On a new subclass of bi-univalent functions satisfying subordinate conditions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (1) (2019), 724–733.
  • [12] H.M. Srivastava, S. Bulut, M. C¸ a˘glar and N. Ya˘gmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (5) (2013), 831–842.
  • [13] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188–1192.
  • [14] Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990–994.
  • [15] Q.-H. Xu, H.-G. Xiao and H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461–11465.
  • [16] P. Zaprawa, Estimates of initial coefficients for bi-univalent functions, Abstr. Appl. Anal. 2014, Art. ID 357480, 1–6.
  • [17] A. Zireh and S. Hajiparvaneh, Coefficient bounds for certain subclasses of analytic and bi-univalent functions, Ann. Acad. Rom. Sci. Ser. Math. Appl. 8 (2) (2016), 133–144.
  • [18] A. Zireh and S. Hajiparvaneh, Coefficient bounds for certain subclasses of analytic functions, Appl. Math. E-Notes 17 (2017), 177–185.
Year 2018, Volume: 6 Issue: 2, 306 - 310, 15.10.2018

Abstract

References

  • [1] R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (3) (2012), 344–351.
  • [2] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes¸-Bolyai Math. 31 (2) (1986), 70–77.
  • [3] K.O. Babalola, On l-pseudo-starlike functions, J. Class. Anal. 3 (2) (2013), 137–147.
  • [4] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43 (2) (2013), 59–65.
  • [5] M. C¸ a˘glar, H. Orhan and N. Ya˘gmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27 (7) (2013), 1165–1171.
  • [6] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2 (1) (2013), 49–60.
  • [7] P.L. Duren, Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983.
  • [8] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573.
  • [9] S. Hajiparvaneh and A. Zireh, Coefficient estimates for subclass of analytic and bi-univalent functions defined by differential operator, Tbilisi Math. J. 10 (2) (2017), 91–102.
  • [10] S. Joshi, S. Joshi and H. Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike functions, J. Egyptian Math. Soc. 24 (2016), 522–525.
  • [11] E. Mazi and S¸ . Altınkaya, On a new subclass of bi-univalent functions satisfying subordinate conditions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (1) (2019), 724–733.
  • [12] H.M. Srivastava, S. Bulut, M. C¸ a˘glar and N. Ya˘gmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (5) (2013), 831–842.
  • [13] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188–1192.
  • [14] Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990–994.
  • [15] Q.-H. Xu, H.-G. Xiao and H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461–11465.
  • [16] P. Zaprawa, Estimates of initial coefficients for bi-univalent functions, Abstr. Appl. Anal. 2014, Art. ID 357480, 1–6.
  • [17] A. Zireh and S. Hajiparvaneh, Coefficient bounds for certain subclasses of analytic and bi-univalent functions, Ann. Acad. Rom. Sci. Ser. Math. Appl. 8 (2) (2016), 133–144.
  • [18] A. Zireh and S. Hajiparvaneh, Coefficient bounds for certain subclasses of analytic functions, Appl. Math. E-Notes 17 (2017), 177–185.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Serap Bulut

Publication Date October 15, 2018
Submission Date December 21, 2017
Acceptance Date October 24, 2018
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

APA Bulut, S. (2018). Coefficient estimates for a subclass of analytic bi-pseudo-starlike functions of Ma-Minda type. Konuralp Journal of Mathematics, 6(2), 306-310.
AMA Bulut S. Coefficient estimates for a subclass of analytic bi-pseudo-starlike functions of Ma-Minda type. Konuralp J. Math. October 2018;6(2):306-310.
Chicago Bulut, Serap. “Coefficient Estimates for a Subclass of Analytic Bi-Pseudo-Starlike Functions of Ma-Minda Type”. Konuralp Journal of Mathematics 6, no. 2 (October 2018): 306-10.
EndNote Bulut S (October 1, 2018) Coefficient estimates for a subclass of analytic bi-pseudo-starlike functions of Ma-Minda type. Konuralp Journal of Mathematics 6 2 306–310.
IEEE S. Bulut, “Coefficient estimates for a subclass of analytic bi-pseudo-starlike functions of Ma-Minda type”, Konuralp J. Math., vol. 6, no. 2, pp. 306–310, 2018.
ISNAD Bulut, Serap. “Coefficient Estimates for a Subclass of Analytic Bi-Pseudo-Starlike Functions of Ma-Minda Type”. Konuralp Journal of Mathematics 6/2 (October 2018), 306-310.
JAMA Bulut S. Coefficient estimates for a subclass of analytic bi-pseudo-starlike functions of Ma-Minda type. Konuralp J. Math. 2018;6:306–310.
MLA Bulut, Serap. “Coefficient Estimates for a Subclass of Analytic Bi-Pseudo-Starlike Functions of Ma-Minda Type”. Konuralp Journal of Mathematics, vol. 6, no. 2, 2018, pp. 306-10.
Vancouver Bulut S. Coefficient estimates for a subclass of analytic bi-pseudo-starlike functions of Ma-Minda type. Konuralp J. Math. 2018;6(2):306-10.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.