Research Article
BibTex RIS Cite

On Some Properties of Incomplete Trivariate Generalized Tribonacci Polynomials

Year 2018, Volume: 6 Issue: 2, 209 - 212, 15.10.2018

Abstract

In this paper we define incomplete trivariate generalized Tribonacci polynomials and obtain some properties of them using tables and sum formulas. Especially, we obtain a recurrence relation of these new class of polynomials.



References

  • [1] Alladi, K. Hoggatt, V.-E., Jr. On Tribonacci numbers and related functions, Fibonacci Quart. Vol:15, No.1 (1977), 42-45.
  • [2] P. Catarino, H. Campos, Incomplete k-Pell, k-Pell-Lucas and modified k-Pell numbers, Hacet. J. Math. Stat. Vol:46 no. 3 (2017), 361-372.
  • [3] Kılıc¸, E., Prodinger, H., A note on the conjecture of Ramirez and Sirvent, J. Integer Seq. Vol:17, No. 5 (2014), 3pp.
  • [4] Hoggatt, V. E., Bicknell, M., Generalized Fibonacci polynomials, Fibonacci Quart. Vol:11, No. 5 (1973), 457-465.
  • [5] Kocer, G.-E., Gedikce, H., Trivariate Fibonacci and Lucas Polynomials, Konuralp J. Math. Vol:4 No. 2 (2016), 247-254.
  • [6] Koshy, T., Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics.: Wiley-Interscience, New York, 2001.
  • [7] Ramirez J.-L., Sirvent, V.-F., Incomplete Tribonacci numbers and polynomials, J. Integer Seq. Vol: 17, No. 4 (2014), 13pp.
Year 2018, Volume: 6 Issue: 2, 209 - 212, 15.10.2018

Abstract

References

  • [1] Alladi, K. Hoggatt, V.-E., Jr. On Tribonacci numbers and related functions, Fibonacci Quart. Vol:15, No.1 (1977), 42-45.
  • [2] P. Catarino, H. Campos, Incomplete k-Pell, k-Pell-Lucas and modified k-Pell numbers, Hacet. J. Math. Stat. Vol:46 no. 3 (2017), 361-372.
  • [3] Kılıc¸, E., Prodinger, H., A note on the conjecture of Ramirez and Sirvent, J. Integer Seq. Vol:17, No. 5 (2014), 3pp.
  • [4] Hoggatt, V. E., Bicknell, M., Generalized Fibonacci polynomials, Fibonacci Quart. Vol:11, No. 5 (1973), 457-465.
  • [5] Kocer, G.-E., Gedikce, H., Trivariate Fibonacci and Lucas Polynomials, Konuralp J. Math. Vol:4 No. 2 (2016), 247-254.
  • [6] Koshy, T., Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics.: Wiley-Interscience, New York, 2001.
  • [7] Ramirez J.-L., Sirvent, V.-F., Incomplete Tribonacci numbers and polynomials, J. Integer Seq. Vol: 17, No. 4 (2014), 13pp.
There are 7 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sümeyra Uçar

Nihal Yılmaz Özgür This is me

Publication Date October 15, 2018
Submission Date February 7, 2018
Acceptance Date September 26, 2018
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

APA Uçar, S., & Yılmaz Özgür, N. (2018). On Some Properties of Incomplete Trivariate Generalized Tribonacci Polynomials. Konuralp Journal of Mathematics, 6(2), 209-212.
AMA Uçar S, Yılmaz Özgür N. On Some Properties of Incomplete Trivariate Generalized Tribonacci Polynomials. Konuralp J. Math. October 2018;6(2):209-212.
Chicago Uçar, Sümeyra, and Nihal Yılmaz Özgür. “On Some Properties of Incomplete Trivariate Generalized Tribonacci Polynomials”. Konuralp Journal of Mathematics 6, no. 2 (October 2018): 209-12.
EndNote Uçar S, Yılmaz Özgür N (October 1, 2018) On Some Properties of Incomplete Trivariate Generalized Tribonacci Polynomials. Konuralp Journal of Mathematics 6 2 209–212.
IEEE S. Uçar and N. Yılmaz Özgür, “On Some Properties of Incomplete Trivariate Generalized Tribonacci Polynomials”, Konuralp J. Math., vol. 6, no. 2, pp. 209–212, 2018.
ISNAD Uçar, Sümeyra - Yılmaz Özgür, Nihal. “On Some Properties of Incomplete Trivariate Generalized Tribonacci Polynomials”. Konuralp Journal of Mathematics 6/2 (October 2018), 209-212.
JAMA Uçar S, Yılmaz Özgür N. On Some Properties of Incomplete Trivariate Generalized Tribonacci Polynomials. Konuralp J. Math. 2018;6:209–212.
MLA Uçar, Sümeyra and Nihal Yılmaz Özgür. “On Some Properties of Incomplete Trivariate Generalized Tribonacci Polynomials”. Konuralp Journal of Mathematics, vol. 6, no. 2, 2018, pp. 209-12.
Vancouver Uçar S, Yılmaz Özgür N. On Some Properties of Incomplete Trivariate Generalized Tribonacci Polynomials. Konuralp J. Math. 2018;6(2):209-12.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.