Research Article
BibTex RIS Cite
Year 2018, Volume: 6 Issue: 2, 332 - 337, 15.10.2018

Abstract

References

  • [1] A. Gezer, A. A. Salimov, Almost complex structures on the tensor bundles, Arab. J. Sci. Eng. Sect. A Sci. 33 (2008), no. 2, 283–296.
  • [2] D. Husemolle, Fibre Bundles. Springer, New York, 1994.
  • [3] H.B. Lawson and M.L. Michelsohn, Spin Geometry. Princeton University Press., Princeton, 1989.
  • [4] A.J. Ledger and K. Yano, Almost complex structure on tensor bundles, J. Dif. Geom. 1 (1967), 355-368.
  • [5] A. Salimov, Tensor Operators and their Applications. Nova Science Publ., New York, 2013.
  • [6] A. A. Salimov and E. Kadıo˘glu, Lifts of Derivations to the Semitangent Bundle, Turk J. Math. 24 (2000), 259-266.
  • [7] N. Steenrod, The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
  • [8] K. Yano and S. Ishihara, Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York, 1973.
  • [9] F. Yıldırım, A pull-back bundle of tensor bundles defined by projection of the tangent bundle,Ordu Univ. J. of Sci. and Tech., 7 (2017), no.2 ,353-366 .
  • [10] F. Yıldırım, Diagonal lift in the semi-cotangent bundle and its applications.Turk J. Math.,42 (2018), no.3, 1312-1327.
  • [11] F. Yıldırım, Note on the cross-section in the semi-tensor bundle, New Trends in Math. Sci., 5 (2017), no. 2, 212-221.
  • [12] F. Yıldırım, On semi-tensor bundle, Int. Electron. J. Geom., 11 (2018), no.1, 93-99.
  • [13] F. Yıldırım and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J. Math, (2014), 38, 325-339.
  • [14] S. Yurttanc¸ıkmaz and F. Yıldırım, Musical isomorphisms on the semi-tensor bundles, Konuralp J. of Math, 6 (2018), no.1, 171-177.

Complete lifts of vector fields to the special class of semi-tensor bundle

Year 2018, Volume: 6 Issue: 2, 332 - 337, 15.10.2018

Abstract

Using projection (submersion) of the cotangent bundle T*M over a manifold M, we define a semi-tensor (pull-back) bundle tM of type (p,q). The present paper is devoted to some results concerning with the complete lifts of vector fields from manifold M to its (p,q)-semitensor bundle.



References

  • [1] A. Gezer, A. A. Salimov, Almost complex structures on the tensor bundles, Arab. J. Sci. Eng. Sect. A Sci. 33 (2008), no. 2, 283–296.
  • [2] D. Husemolle, Fibre Bundles. Springer, New York, 1994.
  • [3] H.B. Lawson and M.L. Michelsohn, Spin Geometry. Princeton University Press., Princeton, 1989.
  • [4] A.J. Ledger and K. Yano, Almost complex structure on tensor bundles, J. Dif. Geom. 1 (1967), 355-368.
  • [5] A. Salimov, Tensor Operators and their Applications. Nova Science Publ., New York, 2013.
  • [6] A. A. Salimov and E. Kadıo˘glu, Lifts of Derivations to the Semitangent Bundle, Turk J. Math. 24 (2000), 259-266.
  • [7] N. Steenrod, The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
  • [8] K. Yano and S. Ishihara, Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York, 1973.
  • [9] F. Yıldırım, A pull-back bundle of tensor bundles defined by projection of the tangent bundle,Ordu Univ. J. of Sci. and Tech., 7 (2017), no.2 ,353-366 .
  • [10] F. Yıldırım, Diagonal lift in the semi-cotangent bundle and its applications.Turk J. Math.,42 (2018), no.3, 1312-1327.
  • [11] F. Yıldırım, Note on the cross-section in the semi-tensor bundle, New Trends in Math. Sci., 5 (2017), no. 2, 212-221.
  • [12] F. Yıldırım, On semi-tensor bundle, Int. Electron. J. Geom., 11 (2018), no.1, 93-99.
  • [13] F. Yıldırım and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J. Math, (2014), 38, 325-339.
  • [14] S. Yurttanc¸ıkmaz and F. Yıldırım, Musical isomorphisms on the semi-tensor bundles, Konuralp J. of Math, 6 (2018), no.1, 171-177.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Murat Polat 0000-0003-1846-0817

Publication Date October 15, 2018
Submission Date May 14, 2018
Acceptance Date October 30, 2018
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

APA Polat, M. (2018). Complete lifts of vector fields to the special class of semi-tensor bundle. Konuralp Journal of Mathematics, 6(2), 332-337.
AMA Polat M. Complete lifts of vector fields to the special class of semi-tensor bundle. Konuralp J. Math. October 2018;6(2):332-337.
Chicago Polat, Murat. “Complete Lifts of Vector Fields to the Special Class of semi-Tensor Bundle”. Konuralp Journal of Mathematics 6, no. 2 (October 2018): 332-37.
EndNote Polat M (October 1, 2018) Complete lifts of vector fields to the special class of semi-tensor bundle. Konuralp Journal of Mathematics 6 2 332–337.
IEEE M. Polat, “Complete lifts of vector fields to the special class of semi-tensor bundle”, Konuralp J. Math., vol. 6, no. 2, pp. 332–337, 2018.
ISNAD Polat, Murat. “Complete Lifts of Vector Fields to the Special Class of semi-Tensor Bundle”. Konuralp Journal of Mathematics 6/2 (October 2018), 332-337.
JAMA Polat M. Complete lifts of vector fields to the special class of semi-tensor bundle. Konuralp J. Math. 2018;6:332–337.
MLA Polat, Murat. “Complete Lifts of Vector Fields to the Special Class of semi-Tensor Bundle”. Konuralp Journal of Mathematics, vol. 6, no. 2, 2018, pp. 332-7.
Vancouver Polat M. Complete lifts of vector fields to the special class of semi-tensor bundle. Konuralp J. Math. 2018;6(2):332-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.