Research Article
BibTex RIS Cite

On Conharmonically Flatness of Lorentzian a-Sasakian Manifolds

Year 2018, Volume: 6 Issue: 2, 213 - 217, 15.10.2018

Abstract

Conharmonically flatness of Lorentzian $\alpha$-Sasakian manifolds is characterized and some structure theorems are discussed. In this manner, conharmonically flat, $\varphi$-conharmonically flat, $\xi$-conharmonically flat and quasi-conharmonically flat Lorentzian $\alpha$-Sasakian manifolds are investigated.


References

  • [1] A. Barman, On Lorentzian a-Sasakian Manifolds Admitting a Type of Semi-symmetric Metric Connection, Novi Sad J. Math Vol:44, No.2 (2014),77-88.
  • [2] A. Bhattacharyya, On a Type of Conharmonically Flat LP-Sasakian Manifold, Anal. Stiin, Ale. Univ.” AL. I. CUZA” IASI SI a Mathematica Vol: 47,(2001), 183-188.
  • [3] U.C. De and R.N. Singh and S.K. Pandey, On the Conharmonic Curvature Tensor of Generalized Sasakian-space-forms, International Scholarly ResearchNetwork ISRN Geometry Vol:2012, (2012), 1-14.
  • [4] S. Dey and A. Bhattacharyya, Some curvature properties of Lorentzian a -Sasakian manifolds, Journal of Dynamical Systems and Geometric TheoriesVol:14, No.1 (2016), 85-98.
  • [5] M.K. Dwivedi and J.S. Kim, On Conharmonic Curvature Tensor in K-contact and Sasakian Manifolds, Bull. Malays. Math. Sci. Soc. (2) Vol:34, No.1(2011), 171-180.
  • [6] SY. Ishi, On Conharmonic Transformation, Tensor NS. Vol:7 (1957), 73-80.
  • [7] S. Lokesh and C.S.B. Venkatesha and K.T.P. Kumar, On Lorentzian a-Sasakian Manifolds, Bulletin of the Malaysian Mathematical Sciences Society.Vol:2, No.3 (2012), 177-182.
  • [8] D.G. Prakasha and C.S. Bagewadi and N.S. Basavarajappa, On Pseudosymmetric Lorentzian a-Sasakian manifolds, IJPAM. Vol:48, No.1 (2008), 57-65.
  • [9] D.G. Prakasha and V. Chavan, On M-Projective Curvature Tensor of Lorentzian a-Sasakian manifolds, International Journal of Pure MathematicalSciences. Vol:18, (2017), 22-31.
  • [10] N.S. Ravikumar and K. Nagana Gouda, Some Results On Lorentzian a-Sasakian manifolds, Mathematica Aertia. Vol:6, No.6 (2016), 867-875.
  • [11] N.S. Ravikumar and K. Nagana Gouda and N. Srikantha, T Curvature Tensor On Lorentzian a-Sasakian manifolds, IJPAM. Vol:112, No.1 (2017),81-91.
  • [12] A. Taleshian and N. Asghari, On Lorentzian a-Sasakian manifolds, The Journal of Mathematics and Computer Science. Vol:4, No.3 (2012), 295-300.
  • [13] A. Taleshian and D.G. Prakasha and K. Vikas and N. Asghari, On the Conharmonic Curvature Tensor of LP-Sasakian Manifolds, Palestine Journal ofMathematics. Vol:5, No.1 (2016), 177-184.
  • [14] A. Yildiz and C. Murathan, On Lorentzian a-Sasakian Manifolds, Kyungpook Mathematical Journal. Vol:45, No.1 (2005), 95-103.
Year 2018, Volume: 6 Issue: 2, 213 - 217, 15.10.2018

Abstract

References

  • [1] A. Barman, On Lorentzian a-Sasakian Manifolds Admitting a Type of Semi-symmetric Metric Connection, Novi Sad J. Math Vol:44, No.2 (2014),77-88.
  • [2] A. Bhattacharyya, On a Type of Conharmonically Flat LP-Sasakian Manifold, Anal. Stiin, Ale. Univ.” AL. I. CUZA” IASI SI a Mathematica Vol: 47,(2001), 183-188.
  • [3] U.C. De and R.N. Singh and S.K. Pandey, On the Conharmonic Curvature Tensor of Generalized Sasakian-space-forms, International Scholarly ResearchNetwork ISRN Geometry Vol:2012, (2012), 1-14.
  • [4] S. Dey and A. Bhattacharyya, Some curvature properties of Lorentzian a -Sasakian manifolds, Journal of Dynamical Systems and Geometric TheoriesVol:14, No.1 (2016), 85-98.
  • [5] M.K. Dwivedi and J.S. Kim, On Conharmonic Curvature Tensor in K-contact and Sasakian Manifolds, Bull. Malays. Math. Sci. Soc. (2) Vol:34, No.1(2011), 171-180.
  • [6] SY. Ishi, On Conharmonic Transformation, Tensor NS. Vol:7 (1957), 73-80.
  • [7] S. Lokesh and C.S.B. Venkatesha and K.T.P. Kumar, On Lorentzian a-Sasakian Manifolds, Bulletin of the Malaysian Mathematical Sciences Society.Vol:2, No.3 (2012), 177-182.
  • [8] D.G. Prakasha and C.S. Bagewadi and N.S. Basavarajappa, On Pseudosymmetric Lorentzian a-Sasakian manifolds, IJPAM. Vol:48, No.1 (2008), 57-65.
  • [9] D.G. Prakasha and V. Chavan, On M-Projective Curvature Tensor of Lorentzian a-Sasakian manifolds, International Journal of Pure MathematicalSciences. Vol:18, (2017), 22-31.
  • [10] N.S. Ravikumar and K. Nagana Gouda, Some Results On Lorentzian a-Sasakian manifolds, Mathematica Aertia. Vol:6, No.6 (2016), 867-875.
  • [11] N.S. Ravikumar and K. Nagana Gouda and N. Srikantha, T Curvature Tensor On Lorentzian a-Sasakian manifolds, IJPAM. Vol:112, No.1 (2017),81-91.
  • [12] A. Taleshian and N. Asghari, On Lorentzian a-Sasakian manifolds, The Journal of Mathematics and Computer Science. Vol:4, No.3 (2012), 295-300.
  • [13] A. Taleshian and D.G. Prakasha and K. Vikas and N. Asghari, On the Conharmonic Curvature Tensor of LP-Sasakian Manifolds, Palestine Journal ofMathematics. Vol:5, No.1 (2016), 177-184.
  • [14] A. Yildiz and C. Murathan, On Lorentzian a-Sasakian Manifolds, Kyungpook Mathematical Journal. Vol:45, No.1 (2005), 95-103.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nesrin Çalışkan

Ayşe Funda Sağlamer This is me

Publication Date October 15, 2018
Submission Date August 6, 2018
Acceptance Date October 1, 2018
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

APA Çalışkan, N., & Sağlamer, A. F. (2018). On Conharmonically Flatness of Lorentzian a-Sasakian Manifolds. Konuralp Journal of Mathematics, 6(2), 213-217.
AMA Çalışkan N, Sağlamer AF. On Conharmonically Flatness of Lorentzian a-Sasakian Manifolds. Konuralp J. Math. October 2018;6(2):213-217.
Chicago Çalışkan, Nesrin, and Ayşe Funda Sağlamer. “On Conharmonically Flatness of Lorentzian a-Sasakian Manifolds”. Konuralp Journal of Mathematics 6, no. 2 (October 2018): 213-17.
EndNote Çalışkan N, Sağlamer AF (October 1, 2018) On Conharmonically Flatness of Lorentzian a-Sasakian Manifolds. Konuralp Journal of Mathematics 6 2 213–217.
IEEE N. Çalışkan and A. F. Sağlamer, “On Conharmonically Flatness of Lorentzian a-Sasakian Manifolds”, Konuralp J. Math., vol. 6, no. 2, pp. 213–217, 2018.
ISNAD Çalışkan, Nesrin - Sağlamer, Ayşe Funda. “On Conharmonically Flatness of Lorentzian a-Sasakian Manifolds”. Konuralp Journal of Mathematics 6/2 (October 2018), 213-217.
JAMA Çalışkan N, Sağlamer AF. On Conharmonically Flatness of Lorentzian a-Sasakian Manifolds. Konuralp J. Math. 2018;6:213–217.
MLA Çalışkan, Nesrin and Ayşe Funda Sağlamer. “On Conharmonically Flatness of Lorentzian a-Sasakian Manifolds”. Konuralp Journal of Mathematics, vol. 6, no. 2, 2018, pp. 213-7.
Vancouver Çalışkan N, Sağlamer AF. On Conharmonically Flatness of Lorentzian a-Sasakian Manifolds. Konuralp J. Math. 2018;6(2):213-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.