Research Article
BibTex RIS Cite

A Survey on the Base, Rolling and Roulette Curves on Generalized Complex Number Plane $\mathbb{C}_{J}$

Year 2019, Volume: 7 Issue: 1, 228 - 232, 15.04.2019

Abstract

In this study, we define a base curve, a rolling curve and a roulette on generalized complex number plane ($\mathfrak{p}$-complex plane) $\mathbb{C}_{J}$. We examine the third one of these curves under the condition that two others given. We also re-obtain

the Euler Savary's formula in $\mathbb{C}_{J}$ as a generalization of the Euler Savary's formula for complex plane $\mathbb{C}$, hyperbolic plane $\mathbb{H}$ and dual plane $\mathbb{D}$.



References

  • [1] Fjelstad, P., Extending special relativity via the perplex numbers. Amer. J. Phys. 54 no.5 (1986), 416–422.
  • [2] Alfsmann, D., On families of 2N dimensional Hypercomplex Algebras suitable for digital signal Processing. Proc. EURASIP 14th European Signal Processing Conference(EUSIPCO 2006), Florence, Italy, 2006.
  • [3] Yaglom, I.M., Complex numbers in geometry, Academic Press, New York, 1968.
  • [4] Y¨uce S., and N. Kuruo˘glu, One-Parameter Plane Hyperbolic Motions, Adv. appl. Clifford alg. 18 (2008), 279-285.
  • [5] P. Fjelstad and S.G. Gal, n-dimensional hyperbolic complex numbers, Adv. Appl. Clifford Algebr. 8 no.1 (1998), 47-68.
  • [6] P. Fjelstad and S.G. Gal, Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers, Adv. Appl. Clifford Algebra 11 no. 1 (2001) 81–107.
  • [7] D. Rochon and M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, fasc. math. 11 (2004), 71–110.
  • [8] F. Catoni, R. Cannata, V. Catoni and P. Zampetti, Hyperbolic Trigonometry in two-dimensional space-time geometry, N. Cim. B 118 B (2003).
  • [9] E. Study, Geometrie der Dynamen, Verlag Teubner, Leipzig, 1903.
  • [10] A. A. Harkin and J. B. Harkin, Geometry of Generalized Complex Numbers, Mathematics Magazine, 77 no. 2 (2014).
  • [11] F. Catoni, D. Boccaletti, , R. Cannata, V. Catoni, E. Nichelatti and P. Zampetti, The mathematics of Minkowski space-time and an introduction to commutative hypercomplex numbers, Birkh auser Verlag, Basel, 2008.
  • [12] I. M. Yaglom, A simple non-Euclidean geometry and its Physical Basis, Springer-Verlag, New York, 1979.
  • [13] E. Pennestri and R. Stefanelli, Linear Algebra and Numerical Algorithms Using Dual Numbers, Multibody System Dynamics, 18 no. 3 (2007), 323–344.
  • [14] G. Sobczyk, The Hyperbolic Number Plane, The College Math. J. 26 no. 4 (1995), 268–280.
  • [15] F. Klein, Uber die sogenante nicht-Euklidische Geometrie, Gesammelte Mathematische Abhandlungen, (1921), 254–305.
  • [16] F. Klein, Vorlesungen ¨uber nicht-Euklidische Geometrie, Springer, Berlin, 1928.
  • [17] H. Es, Motions and Nine Different Geometry, PhD Thesis, Ankara University Graduate School of Natural and Applied Sciences, 2003.
  • [18] G. Helzer,Special Relativity with Acceleration, The American Mathematical Monthly, 107 no. 3 (2000), 219-237.
  • [19] R. Salgado, Space-Time Trigonometry, AAPT Topical Conference: Teaching General Relativity to Undergraduates, AAPT Summer Meeting, Syrauce University, NY, July 20-21,22-26 2006.
  • [20] M. A. F. Sanjuan, Group Contraction and Nine Cayley-Klein Geometries, International Journal of Theoretical Physics, 23(1) (1984).
  • [21] V. V. Kisil, Geometry of M¨obius Transformations:Eliptic, Parabolic and Hyperbolic Actions of SL2 (R), Imperial College Press, London, 2012.
  • [22] N. A. Gromov and V. V. Kuratov, Possible quantum kinematics, J. Math. Phys. 47 no. 1 (2006).
  • [23] J.C. Alexander , Maddocks J.H., On the Maneuvering of Vehicles, SIAM J. Appl. Math. 48(1): 38-52,1988.
  • [24] R. Buckley, E.V. Whitfield, The Euler-Savary Formula, The Mathematical Gazette 33(306): 297-299, 1949.
  • [25] D.B. Dooner, M.W. Griffis, On the Spatial Euler-Savary Equations for Envelopes, J. Mech. Design 129(8): 865-875, 2007.
  • [26] Ito N., Takahashi K., Extension of the Euler-Savary Equation to Hypoid Gears, JSME Int.Journal. Ser C. Mech Systems 42(1): 218-224, 1999.
  • [27] G.R. Pennock, N.N. Raje, Curvature Theory for the Double Flier Eight-Bar Linkage, Mech. Theory 39: 665-679, 2004.
  • [28] S. Ersoy, M. Akyigit, One-Parameter Homothetic Motion in the Hyperbolic Plane and Euler-Savary Formula, Adv. Appl. Clifford Algebras, Vol. 21 ,pp. 297 - 313 , 2011 .
  • [29] D. L. Wang, J. Liu, D. Xaio, A unified Curvature Theory in kinematic geometry of mechanism, Science in China (Series E). 41(2): 196-202, 1998.
  • [30] W. Blaschke, H.R. M¨uller, Ebene Kinematik, Verlag Oldenbourg, M¨unchen, 1959.
  • [31] O. R¨oschel, Zur Kinematik der isotropen Ebene., Journal of Geometry, 21, 146–156,1983.
  • [32] I. Aytun, Euler-Savary formula for one-parameter Lorentzian plane motion and its Lorentzian geometrical interpretation, M.Sc. Thesis, Celal Bayar University, 2002.
  • [33] T. Ikawa, Euler-Savary’s formula on Minkowski geometry, Balkan Journal of Geometry and Its Applications, 8 (2), 31-36, 2003.
  • [34] M. Akbıyık, S. Y¨uce, The Moving Coordinate System And Euler-Savary’s Formula For The One Parameter Motions On Galilean (Isotropic) Plane, International Journal of Mathematical Combinatorics, vol.2015, pp.88-105, 2015.
  • [35] M. Akbıyık, S. Y¨uce, A Note On Euler Savary’s Formula On Galilean Plane, IWBCSM-2013 1st International Western Balkans Conference of Mathematical Sciences, Tiran, Albania, May 30-June 1, 2013, pp.173-174
  • [36] M. Masal, M. Tosun, A. Z. Pirdal, Euler Savary formula for the one parameter motions in the complex plane C; International Journal of Physical Sciences, 5 (1), 006-010, 2010.
  • [37] M. Akbıyık, S. Y¨uce, Euler-Savary’s Formula on Complex Plane C, Applied Mathematics E-Notes, vol.2016, pp.65-71, 2016.
  • [38] M. Akbıyık, S. Y¨uce, Euler-Savary’s Formula on The Dual Plane D, 13th Algebraic Hyperstructures and its Applications Conference (AHA2017), Istanbul, Turkey, 24-27 July 2017, pp.119.
  • [39] N. Gurses, M. Akbıyık, S. Y¨uce, One-Parameter Homothetic Motions and Euler-Savary Formula in Generalized Complex Number Plane CJ , Adv. Appl. Clifford Algebras, 26(2016), 115-136.
Year 2019, Volume: 7 Issue: 1, 228 - 232, 15.04.2019

Abstract

References

  • [1] Fjelstad, P., Extending special relativity via the perplex numbers. Amer. J. Phys. 54 no.5 (1986), 416–422.
  • [2] Alfsmann, D., On families of 2N dimensional Hypercomplex Algebras suitable for digital signal Processing. Proc. EURASIP 14th European Signal Processing Conference(EUSIPCO 2006), Florence, Italy, 2006.
  • [3] Yaglom, I.M., Complex numbers in geometry, Academic Press, New York, 1968.
  • [4] Y¨uce S., and N. Kuruo˘glu, One-Parameter Plane Hyperbolic Motions, Adv. appl. Clifford alg. 18 (2008), 279-285.
  • [5] P. Fjelstad and S.G. Gal, n-dimensional hyperbolic complex numbers, Adv. Appl. Clifford Algebr. 8 no.1 (1998), 47-68.
  • [6] P. Fjelstad and S.G. Gal, Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers, Adv. Appl. Clifford Algebra 11 no. 1 (2001) 81–107.
  • [7] D. Rochon and M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, fasc. math. 11 (2004), 71–110.
  • [8] F. Catoni, R. Cannata, V. Catoni and P. Zampetti, Hyperbolic Trigonometry in two-dimensional space-time geometry, N. Cim. B 118 B (2003).
  • [9] E. Study, Geometrie der Dynamen, Verlag Teubner, Leipzig, 1903.
  • [10] A. A. Harkin and J. B. Harkin, Geometry of Generalized Complex Numbers, Mathematics Magazine, 77 no. 2 (2014).
  • [11] F. Catoni, D. Boccaletti, , R. Cannata, V. Catoni, E. Nichelatti and P. Zampetti, The mathematics of Minkowski space-time and an introduction to commutative hypercomplex numbers, Birkh auser Verlag, Basel, 2008.
  • [12] I. M. Yaglom, A simple non-Euclidean geometry and its Physical Basis, Springer-Verlag, New York, 1979.
  • [13] E. Pennestri and R. Stefanelli, Linear Algebra and Numerical Algorithms Using Dual Numbers, Multibody System Dynamics, 18 no. 3 (2007), 323–344.
  • [14] G. Sobczyk, The Hyperbolic Number Plane, The College Math. J. 26 no. 4 (1995), 268–280.
  • [15] F. Klein, Uber die sogenante nicht-Euklidische Geometrie, Gesammelte Mathematische Abhandlungen, (1921), 254–305.
  • [16] F. Klein, Vorlesungen ¨uber nicht-Euklidische Geometrie, Springer, Berlin, 1928.
  • [17] H. Es, Motions and Nine Different Geometry, PhD Thesis, Ankara University Graduate School of Natural and Applied Sciences, 2003.
  • [18] G. Helzer,Special Relativity with Acceleration, The American Mathematical Monthly, 107 no. 3 (2000), 219-237.
  • [19] R. Salgado, Space-Time Trigonometry, AAPT Topical Conference: Teaching General Relativity to Undergraduates, AAPT Summer Meeting, Syrauce University, NY, July 20-21,22-26 2006.
  • [20] M. A. F. Sanjuan, Group Contraction and Nine Cayley-Klein Geometries, International Journal of Theoretical Physics, 23(1) (1984).
  • [21] V. V. Kisil, Geometry of M¨obius Transformations:Eliptic, Parabolic and Hyperbolic Actions of SL2 (R), Imperial College Press, London, 2012.
  • [22] N. A. Gromov and V. V. Kuratov, Possible quantum kinematics, J. Math. Phys. 47 no. 1 (2006).
  • [23] J.C. Alexander , Maddocks J.H., On the Maneuvering of Vehicles, SIAM J. Appl. Math. 48(1): 38-52,1988.
  • [24] R. Buckley, E.V. Whitfield, The Euler-Savary Formula, The Mathematical Gazette 33(306): 297-299, 1949.
  • [25] D.B. Dooner, M.W. Griffis, On the Spatial Euler-Savary Equations for Envelopes, J. Mech. Design 129(8): 865-875, 2007.
  • [26] Ito N., Takahashi K., Extension of the Euler-Savary Equation to Hypoid Gears, JSME Int.Journal. Ser C. Mech Systems 42(1): 218-224, 1999.
  • [27] G.R. Pennock, N.N. Raje, Curvature Theory for the Double Flier Eight-Bar Linkage, Mech. Theory 39: 665-679, 2004.
  • [28] S. Ersoy, M. Akyigit, One-Parameter Homothetic Motion in the Hyperbolic Plane and Euler-Savary Formula, Adv. Appl. Clifford Algebras, Vol. 21 ,pp. 297 - 313 , 2011 .
  • [29] D. L. Wang, J. Liu, D. Xaio, A unified Curvature Theory in kinematic geometry of mechanism, Science in China (Series E). 41(2): 196-202, 1998.
  • [30] W. Blaschke, H.R. M¨uller, Ebene Kinematik, Verlag Oldenbourg, M¨unchen, 1959.
  • [31] O. R¨oschel, Zur Kinematik der isotropen Ebene., Journal of Geometry, 21, 146–156,1983.
  • [32] I. Aytun, Euler-Savary formula for one-parameter Lorentzian plane motion and its Lorentzian geometrical interpretation, M.Sc. Thesis, Celal Bayar University, 2002.
  • [33] T. Ikawa, Euler-Savary’s formula on Minkowski geometry, Balkan Journal of Geometry and Its Applications, 8 (2), 31-36, 2003.
  • [34] M. Akbıyık, S. Y¨uce, The Moving Coordinate System And Euler-Savary’s Formula For The One Parameter Motions On Galilean (Isotropic) Plane, International Journal of Mathematical Combinatorics, vol.2015, pp.88-105, 2015.
  • [35] M. Akbıyık, S. Y¨uce, A Note On Euler Savary’s Formula On Galilean Plane, IWBCSM-2013 1st International Western Balkans Conference of Mathematical Sciences, Tiran, Albania, May 30-June 1, 2013, pp.173-174
  • [36] M. Masal, M. Tosun, A. Z. Pirdal, Euler Savary formula for the one parameter motions in the complex plane C; International Journal of Physical Sciences, 5 (1), 006-010, 2010.
  • [37] M. Akbıyık, S. Y¨uce, Euler-Savary’s Formula on Complex Plane C, Applied Mathematics E-Notes, vol.2016, pp.65-71, 2016.
  • [38] M. Akbıyık, S. Y¨uce, Euler-Savary’s Formula on The Dual Plane D, 13th Algebraic Hyperstructures and its Applications Conference (AHA2017), Istanbul, Turkey, 24-27 July 2017, pp.119.
  • [39] N. Gurses, M. Akbıyık, S. Y¨uce, One-Parameter Homothetic Motions and Euler-Savary Formula in Generalized Complex Number Plane CJ , Adv. Appl. Clifford Algebras, 26(2016), 115-136.
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mücahit Akbıyık

Nurten Gürses

Salim Yüce

Publication Date April 15, 2019
Submission Date November 2, 2017
Acceptance Date April 15, 2019
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

APA Akbıyık, M., Gürses, N., & Yüce, S. (2019). A Survey on the Base, Rolling and Roulette Curves on Generalized Complex Number Plane $\mathbb{C}_{J}$. Konuralp Journal of Mathematics, 7(1), 228-232.
AMA Akbıyık M, Gürses N, Yüce S. A Survey on the Base, Rolling and Roulette Curves on Generalized Complex Number Plane $\mathbb{C}_{J}$. Konuralp J. Math. April 2019;7(1):228-232.
Chicago Akbıyık, Mücahit, Nurten Gürses, and Salim Yüce. “A Survey on the Base, Rolling and Roulette Curves on Generalized Complex Number Plane $\mathbb{C}_{J}$”. Konuralp Journal of Mathematics 7, no. 1 (April 2019): 228-32.
EndNote Akbıyık M, Gürses N, Yüce S (April 1, 2019) A Survey on the Base, Rolling and Roulette Curves on Generalized Complex Number Plane $\mathbb{C}_{J}$. Konuralp Journal of Mathematics 7 1 228–232.
IEEE M. Akbıyık, N. Gürses, and S. Yüce, “A Survey on the Base, Rolling and Roulette Curves on Generalized Complex Number Plane $\mathbb{C}_{J}$”, Konuralp J. Math., vol. 7, no. 1, pp. 228–232, 2019.
ISNAD Akbıyık, Mücahit et al. “A Survey on the Base, Rolling and Roulette Curves on Generalized Complex Number Plane $\mathbb{C}_{J}$”. Konuralp Journal of Mathematics 7/1 (April 2019), 228-232.
JAMA Akbıyık M, Gürses N, Yüce S. A Survey on the Base, Rolling and Roulette Curves on Generalized Complex Number Plane $\mathbb{C}_{J}$. Konuralp J. Math. 2019;7:228–232.
MLA Akbıyık, Mücahit et al. “A Survey on the Base, Rolling and Roulette Curves on Generalized Complex Number Plane $\mathbb{C}_{J}$”. Konuralp Journal of Mathematics, vol. 7, no. 1, 2019, pp. 228-32.
Vancouver Akbıyık M, Gürses N, Yüce S. A Survey on the Base, Rolling and Roulette Curves on Generalized Complex Number Plane $\mathbb{C}_{J}$. Konuralp J. Math. 2019;7(1):228-32.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.