[1] Steinhaus, H.: Sur la convergence ordinarie et la convergence asimptotique. Colloq. Math. (2), 73-74 (1951)
[2] Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241-244 (1951)
[3] Schoenberg, I., J.: The integrability of certain functions and related summability methods. Amer. Math. Montly 86, 361-375 (1959)
[4] Connor, J.: The statistical and strong p-Cesaro convergence of sequences. Analysis 8, 47-63 (1988)
[5] Connor, J.: On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 32, 194-198 (1989)
[6] Fridy, J. A.: On statistical convergence. Analysis 5, 301-313, (1985)
[7] Maio, G. D., Koˇcinac, L. D. R.: Statistical convergence in topology. Topol. Appl. 156, 28-45 (2008)
[8] Li, K., Lin, S., Ge, Y.: On statistical convergence in cone metric space. Topol. Appl. 196, 641-651 (2015)
[9] Turan, N., Kara, E. E., lkhan, M.: Quasi statistical convergence in cone metric spaces. Facta Univ. Ser. Math. Inform. 33(4), 613-626 (2018)
[10] lkhan, M., Kara, E. E.: A new type of statistical Cauchy sequence and its relation to Bourbaki completeness. Cogent Math. Stat. 5(1), 1-9 (2018)
[11] Ganichev, M., Kadets, V.: “Filter convergence in Banach spaces and generalized bases,” in General Topology in Banach Spaces. USA: Nova Science
61-69 (2001)
The main purpose of this paper is to describe the quasi-statistical convergence of order $\alpha $ in the rectangular cone metric space and investigate some relations of these sequences.
[1] Steinhaus, H.: Sur la convergence ordinarie et la convergence asimptotique. Colloq. Math. (2), 73-74 (1951)
[2] Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241-244 (1951)
[3] Schoenberg, I., J.: The integrability of certain functions and related summability methods. Amer. Math. Montly 86, 361-375 (1959)
[4] Connor, J.: The statistical and strong p-Cesaro convergence of sequences. Analysis 8, 47-63 (1988)
[5] Connor, J.: On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 32, 194-198 (1989)
[6] Fridy, J. A.: On statistical convergence. Analysis 5, 301-313, (1985)
[7] Maio, G. D., Koˇcinac, L. D. R.: Statistical convergence in topology. Topol. Appl. 156, 28-45 (2008)
[8] Li, K., Lin, S., Ge, Y.: On statistical convergence in cone metric space. Topol. Appl. 196, 641-651 (2015)
[9] Turan, N., Kara, E. E., lkhan, M.: Quasi statistical convergence in cone metric spaces. Facta Univ. Ser. Math. Inform. 33(4), 613-626 (2018)
[10] lkhan, M., Kara, E. E.: A new type of statistical Cauchy sequence and its relation to Bourbaki completeness. Cogent Math. Stat. 5(1), 1-9 (2018)
[11] Ganichev, M., Kadets, V.: “Filter convergence in Banach spaces and generalized bases,” in General Topology in Banach Spaces. USA: Nova Science
61-69 (2001)
Turan, N., & Başarır, M. (2019). A Note on Quasi-Statistical Convergence of Order $\alpha $ in Rectangular Cone Metric Space. Konuralp Journal of Mathematics, 7(1), 91-96.
AMA
Turan N, Başarır M. A Note on Quasi-Statistical Convergence of Order $\alpha $ in Rectangular Cone Metric Space. Konuralp J. Math. April 2019;7(1):91-96.
Chicago
Turan, Nihan, and Metin Başarır. “A Note on Quasi-Statistical Convergence of Order $\alpha $ in Rectangular Cone Metric Space”. Konuralp Journal of Mathematics 7, no. 1 (April 2019): 91-96.
EndNote
Turan N, Başarır M (April 1, 2019) A Note on Quasi-Statistical Convergence of Order $\alpha $ in Rectangular Cone Metric Space. Konuralp Journal of Mathematics 7 1 91–96.
IEEE
N. Turan and M. Başarır, “A Note on Quasi-Statistical Convergence of Order $\alpha $ in Rectangular Cone Metric Space”, Konuralp J. Math., vol. 7, no. 1, pp. 91–96, 2019.
ISNAD
Turan, Nihan - Başarır, Metin. “A Note on Quasi-Statistical Convergence of Order $\alpha $ in Rectangular Cone Metric Space”. Konuralp Journal of Mathematics 7/1 (April 2019), 91-96.
JAMA
Turan N, Başarır M. A Note on Quasi-Statistical Convergence of Order $\alpha $ in Rectangular Cone Metric Space. Konuralp J. Math. 2019;7:91–96.
MLA
Turan, Nihan and Metin Başarır. “A Note on Quasi-Statistical Convergence of Order $\alpha $ in Rectangular Cone Metric Space”. Konuralp Journal of Mathematics, vol. 7, no. 1, 2019, pp. 91-96.
Vancouver
Turan N, Başarır M. A Note on Quasi-Statistical Convergence of Order $\alpha $ in Rectangular Cone Metric Space. Konuralp J. Math. 2019;7(1):91-6.