On $\beta_1-\mathcal{I}-$ Paracompact Spaces
Year 2019,
Volume: 7 Issue: 1, 73 - 78, 15.04.2019
Elif Turanlı
,
Oya Bedre Özbakır
Abstract
In this paper our aim is to introduce the class of $\beta_1-$paracompact spaces in ideal topological spaces. Then, some fundamental properties of $\beta_1-\mathcal{I}-$paracompact spaces are given. Also, the relationships between $\beta_1-\mathcal{I}-$paracompact spaces and other types of paracompact spaces are studied .
References
-
[1] AlJarrah, H. H., b1-paracompact spaces, J. Nonlinear Sci. Appl., Vol:9 (4) (2016).
-
[2] Al-Zoubi, K. Y., S-Paracompact Spaces, Acta Math. Hungar, 110(1-2) (2006), 165-174.
-
[3] Andrijevic, D., Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
-
[4] Arkhangelski, V.I. (1984). Ponomarev, Fundamentals of General Topology Problems and Exercises, Hindustan, India.
-
[5] Bourbaki, N., General Topology, Part I., Addison-Wesley, Reading, Mass, (1966).
-
[6] Carnahan, D., Locally nearly-compact spaces, Boll. Un. Mat. Ital., 6.1 (1972), 146–153.
-
[7] Dahmen, R., Smooth embeddings of the Long Line and other non-paracompact manifolds into locally convex spaces, Topology and its Applications, 202
(2016), 70-79.
-
[8] Demir, I. and Ozbakir O. B., On b-paracompact spaces, Filomat 27(6) (2013), 971-976.
-
[9] Dieudonne, J. A., Une generalisation des espaces compacts, J. Math. Pures. Appl., 23 (1944), 65-76.
-
[10] El-Monsef, M. A., El-Deeb, S. N. and Mahmoud, R. A., bopen sets and bcontinuous mappings, Bull. Fac. Sci. Assiut Univ, 12(1) (1983), 77-90.
-
[11] El-Monsef, M. A., Geaisa, A. N. and Mahmoud, R. A., bregular spaces, In Proc. Math. Phys. Soc. Egypt, 60 (1985), 47-52.
-
[12] El-Monsef, M. A., Mahmoud, R. A. and Lashin, E. R., bclosure and binterior, J. Fac. Ed. Ain Shams Univ, 10 (1986), 235-245.
-
[13] Gutev V., Strongly paracompact metrizable spaces, Colloq. Math. 2 (2016), 144.
-
[14] Hamlett, T. R., Rose, D. and Jankovic, D., Paracompactness with respect to an ideal, International Journal of Mathematics and Mathematical Sciences,
20(3) (1997), 433-442.
-
[15] Jankovic, D. and Hamlett, T. R., New topologies from old via ideals, The American Mathematical Monthly, 97(4) (1990), 295-310.
-
[16] Jankovic, D.S., A note on mappings of extremally disconnected spaces, Acta Math. Hungar. 46 (1985), 83–92.
-
[17] Kuratowski, K., Topology I, NewYork Academic Press., (1966).
-
[18] Mahmoud, R. A. and Abd El-Monsef, M. E., b-irresolute and b-topological invariant, Proc. Pakistan Acad. Sci. 27 (1990), 285- 296.
-
[19] Navalagi G.B., Semi-precontinuous functions and properties of generalized semi-preclosed sets in topological spaces, Int. J. Math. Sci., 29, 1.1. (2002),
85-98.
-
[20] Njastad, O., On some classes of nearly open sets, Pacific Journal of mathematics, 15(3) (1965), 961-970.
-
[21] Noiri, T., Completely continuous image of nearly paracompact space, Mat. Vesn., 29, 1.6 (1977), 59–64.
-
[22] Ravi, O., Kumarb, R. S. and Choudhic, A. H., Decompositions of pg-Continuity via Idealization, Journal of New Results in Science, (2014), 3(7).
-
[23] Ray, A. D. and Bhowmick, R., m-paracompact and qm-paracompact generalized topological spaces, Hacettepe Journal of Mathematics and Statistics
45 (2) (2016), 447-453.
-
[24] Renukadevi, V. and Sathiyasundari, N., Nearly Paracompactness with respect to an ideal, J. Adv. Math. Stud. 8 (2015), 18-39.
-
[25] Sanabria, J., Rosas, E., Carpintero, C., Salas-Brown, M. and Garcıa, O., S-Paracompactness in ideal topological spaces, Mat. Vesnik, 68(3) (2016),
192-203.
-
[26] Sathiyasundari, N. and Renukadevi, V., Paracompactness with respect to an ideal, Filomat 27(2) (2013), 333-339.
-
[27] Singal M.K. and Singal A.R., Almost-continuous mappings, Yokohama Math. J. I6 (1968), 63-73.
-
[28] Stone, A. H., Paracompactness and product spaces, Bulletin of the American Mathematical Society, 54(10) (1948), 977-982.
-
[29] Vaidyanathaswamy, R., The localisation theory in set-topology, In Proceedings of the Indian Academy of Sciences-Section, Springer India, 20, 1 (1944),
51-61.
-
[30] Willard, S., General topology, Addison-Wesley Publishing Company, (1970).
-
[31] Zahid, M. I., Para H-closed spaces, locally para H-closed spaces and their minimal topologies, Ph. D. Dissertation, Univ. of Pittsburgh, (1981).
Year 2019,
Volume: 7 Issue: 1, 73 - 78, 15.04.2019
Elif Turanlı
,
Oya Bedre Özbakır
References
-
[1] AlJarrah, H. H., b1-paracompact spaces, J. Nonlinear Sci. Appl., Vol:9 (4) (2016).
-
[2] Al-Zoubi, K. Y., S-Paracompact Spaces, Acta Math. Hungar, 110(1-2) (2006), 165-174.
-
[3] Andrijevic, D., Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
-
[4] Arkhangelski, V.I. (1984). Ponomarev, Fundamentals of General Topology Problems and Exercises, Hindustan, India.
-
[5] Bourbaki, N., General Topology, Part I., Addison-Wesley, Reading, Mass, (1966).
-
[6] Carnahan, D., Locally nearly-compact spaces, Boll. Un. Mat. Ital., 6.1 (1972), 146–153.
-
[7] Dahmen, R., Smooth embeddings of the Long Line and other non-paracompact manifolds into locally convex spaces, Topology and its Applications, 202
(2016), 70-79.
-
[8] Demir, I. and Ozbakir O. B., On b-paracompact spaces, Filomat 27(6) (2013), 971-976.
-
[9] Dieudonne, J. A., Une generalisation des espaces compacts, J. Math. Pures. Appl., 23 (1944), 65-76.
-
[10] El-Monsef, M. A., El-Deeb, S. N. and Mahmoud, R. A., bopen sets and bcontinuous mappings, Bull. Fac. Sci. Assiut Univ, 12(1) (1983), 77-90.
-
[11] El-Monsef, M. A., Geaisa, A. N. and Mahmoud, R. A., bregular spaces, In Proc. Math. Phys. Soc. Egypt, 60 (1985), 47-52.
-
[12] El-Monsef, M. A., Mahmoud, R. A. and Lashin, E. R., bclosure and binterior, J. Fac. Ed. Ain Shams Univ, 10 (1986), 235-245.
-
[13] Gutev V., Strongly paracompact metrizable spaces, Colloq. Math. 2 (2016), 144.
-
[14] Hamlett, T. R., Rose, D. and Jankovic, D., Paracompactness with respect to an ideal, International Journal of Mathematics and Mathematical Sciences,
20(3) (1997), 433-442.
-
[15] Jankovic, D. and Hamlett, T. R., New topologies from old via ideals, The American Mathematical Monthly, 97(4) (1990), 295-310.
-
[16] Jankovic, D.S., A note on mappings of extremally disconnected spaces, Acta Math. Hungar. 46 (1985), 83–92.
-
[17] Kuratowski, K., Topology I, NewYork Academic Press., (1966).
-
[18] Mahmoud, R. A. and Abd El-Monsef, M. E., b-irresolute and b-topological invariant, Proc. Pakistan Acad. Sci. 27 (1990), 285- 296.
-
[19] Navalagi G.B., Semi-precontinuous functions and properties of generalized semi-preclosed sets in topological spaces, Int. J. Math. Sci., 29, 1.1. (2002),
85-98.
-
[20] Njastad, O., On some classes of nearly open sets, Pacific Journal of mathematics, 15(3) (1965), 961-970.
-
[21] Noiri, T., Completely continuous image of nearly paracompact space, Mat. Vesn., 29, 1.6 (1977), 59–64.
-
[22] Ravi, O., Kumarb, R. S. and Choudhic, A. H., Decompositions of pg-Continuity via Idealization, Journal of New Results in Science, (2014), 3(7).
-
[23] Ray, A. D. and Bhowmick, R., m-paracompact and qm-paracompact generalized topological spaces, Hacettepe Journal of Mathematics and Statistics
45 (2) (2016), 447-453.
-
[24] Renukadevi, V. and Sathiyasundari, N., Nearly Paracompactness with respect to an ideal, J. Adv. Math. Stud. 8 (2015), 18-39.
-
[25] Sanabria, J., Rosas, E., Carpintero, C., Salas-Brown, M. and Garcıa, O., S-Paracompactness in ideal topological spaces, Mat. Vesnik, 68(3) (2016),
192-203.
-
[26] Sathiyasundari, N. and Renukadevi, V., Paracompactness with respect to an ideal, Filomat 27(2) (2013), 333-339.
-
[27] Singal M.K. and Singal A.R., Almost-continuous mappings, Yokohama Math. J. I6 (1968), 63-73.
-
[28] Stone, A. H., Paracompactness and product spaces, Bulletin of the American Mathematical Society, 54(10) (1948), 977-982.
-
[29] Vaidyanathaswamy, R., The localisation theory in set-topology, In Proceedings of the Indian Academy of Sciences-Section, Springer India, 20, 1 (1944),
51-61.
-
[30] Willard, S., General topology, Addison-Wesley Publishing Company, (1970).
-
[31] Zahid, M. I., Para H-closed spaces, locally para H-closed spaces and their minimal topologies, Ph. D. Dissertation, Univ. of Pittsburgh, (1981).