Research Article
BibTex RIS Cite

On the Generalization of Opial Type Inequality for Convex Function

Year 2019, Volume: 7 Issue: 2, 456 - 461, 15.10.2019

Abstract

In this article, by using new different approach method, we establish some generalization of Opial like inequality for convex mappings.

References

  • [1] R.P. Agarwal and P.Y.H. Pang, Opial inequalities with applications in differential and difference equations, Mathematics and Its Applications book series (MAIA, volume 320), Kluwer Academic Publishers, London, 1995.
  • [2] W.S. Cheung, Some new Opial-type inequalities, Mathematika, 37 (1990), 136–142.
  • [3] W.S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317– 321.
  • [4] E.K. Godunova and V.l. Levin, On an inequality of Maroni, (Russian), Mat. Zametki 2(1967), 221-224.
  • [5] X. G. He, A short of a generalization on Opial’ s inequailty,Journal of Mathematical Analysis and Applications,182, (1994), 299-300.
  • [6] P. Maroni, Sur l’in´egalit´e d’Opial-Beesack, C. R. Acad. Sci. Paris Ser. A-B, 264 (1967), A62–A64.
  • [7] Hua L.K., On an inequality of Opial, Sci China., 14(1965), 789-790.
  • [8] C. Olech, A simple proof of a certain result of Z. Opial. Ann. Polon. Math. 8 (1960), 61–63.
  • [9] Z. Opial, Sur une inegaliti, Ann. Polon. Math. 8 (1960), 29-32.
  • [10] B. G. Pachpatte, On Opial-type integral inequalities , J. Math. Anal. Appl. 120 (1986), 547–556.
  • [11] B. G. Pachpatte, Some inequalities similar to Opial’s inequality , Demonstratio Math. 26 (1993), 643–647.
  • [12] B. G. Pachpatte, A note on some new Opial type integral inequalities, Octogon Math. Mag. 7 (1999), 80–84.
  • [13] B. G. Pachpatte, On some inequalities of the Weyl type, An. Stiint. Univ. “Al.I. Cuza” Iasi 40 (1994), 89–95.
  • [14] S.H. Saker, M.D. Abdou and I. Kubiaczyk, Opial and Polya type inequalities via convexity, Fasciculi Mathematici, 60(1), 145–159, 2018.
  • [15] H. M. Srivastava, K.-L. Tseng, S.-J. Tseng and J.-C. Lo, Some weighted Opial-type inequalities on time scales, Taiwanese J. Math., 14 (2010), 107–122.
  • [16] C.-J. Zhao and W.-S. Cheung, On Opial-type integral inequalities and applications. Math. Inequal. Appl. 17 (2014), no. 1, 223–232.
  • [17] F. H. Wong, W. C. Lian, S. L. Yu and C. C. Yeh, Some generalizations of Opial’s inequalities on time scales, Taiwanese Journal of Mathematics, Vol. 12, Number 2, April 2008, Pp. 463–471.
Year 2019, Volume: 7 Issue: 2, 456 - 461, 15.10.2019

Abstract

References

  • [1] R.P. Agarwal and P.Y.H. Pang, Opial inequalities with applications in differential and difference equations, Mathematics and Its Applications book series (MAIA, volume 320), Kluwer Academic Publishers, London, 1995.
  • [2] W.S. Cheung, Some new Opial-type inequalities, Mathematika, 37 (1990), 136–142.
  • [3] W.S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317– 321.
  • [4] E.K. Godunova and V.l. Levin, On an inequality of Maroni, (Russian), Mat. Zametki 2(1967), 221-224.
  • [5] X. G. He, A short of a generalization on Opial’ s inequailty,Journal of Mathematical Analysis and Applications,182, (1994), 299-300.
  • [6] P. Maroni, Sur l’in´egalit´e d’Opial-Beesack, C. R. Acad. Sci. Paris Ser. A-B, 264 (1967), A62–A64.
  • [7] Hua L.K., On an inequality of Opial, Sci China., 14(1965), 789-790.
  • [8] C. Olech, A simple proof of a certain result of Z. Opial. Ann. Polon. Math. 8 (1960), 61–63.
  • [9] Z. Opial, Sur une inegaliti, Ann. Polon. Math. 8 (1960), 29-32.
  • [10] B. G. Pachpatte, On Opial-type integral inequalities , J. Math. Anal. Appl. 120 (1986), 547–556.
  • [11] B. G. Pachpatte, Some inequalities similar to Opial’s inequality , Demonstratio Math. 26 (1993), 643–647.
  • [12] B. G. Pachpatte, A note on some new Opial type integral inequalities, Octogon Math. Mag. 7 (1999), 80–84.
  • [13] B. G. Pachpatte, On some inequalities of the Weyl type, An. Stiint. Univ. “Al.I. Cuza” Iasi 40 (1994), 89–95.
  • [14] S.H. Saker, M.D. Abdou and I. Kubiaczyk, Opial and Polya type inequalities via convexity, Fasciculi Mathematici, 60(1), 145–159, 2018.
  • [15] H. M. Srivastava, K.-L. Tseng, S.-J. Tseng and J.-C. Lo, Some weighted Opial-type inequalities on time scales, Taiwanese J. Math., 14 (2010), 107–122.
  • [16] C.-J. Zhao and W.-S. Cheung, On Opial-type integral inequalities and applications. Math. Inequal. Appl. 17 (2014), no. 1, 223–232.
  • [17] F. H. Wong, W. C. Lian, S. L. Yu and C. C. Yeh, Some generalizations of Opial’s inequalities on time scales, Taiwanese Journal of Mathematics, Vol. 12, Number 2, April 2008, Pp. 463–471.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Zeki Sarıkaya 0000-0002-6165-9242

Publication Date October 15, 2019
Submission Date July 31, 2019
Acceptance Date September 30, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Sarıkaya, M. Z. (2019). On the Generalization of Opial Type Inequality for Convex Function. Konuralp Journal of Mathematics, 7(2), 456-461.
AMA Sarıkaya MZ. On the Generalization of Opial Type Inequality for Convex Function. Konuralp J. Math. October 2019;7(2):456-461.
Chicago Sarıkaya, Mehmet Zeki. “On the Generalization of Opial Type Inequality for Convex Function”. Konuralp Journal of Mathematics 7, no. 2 (October 2019): 456-61.
EndNote Sarıkaya MZ (October 1, 2019) On the Generalization of Opial Type Inequality for Convex Function. Konuralp Journal of Mathematics 7 2 456–461.
IEEE M. Z. Sarıkaya, “On the Generalization of Opial Type Inequality for Convex Function”, Konuralp J. Math., vol. 7, no. 2, pp. 456–461, 2019.
ISNAD Sarıkaya, Mehmet Zeki. “On the Generalization of Opial Type Inequality for Convex Function”. Konuralp Journal of Mathematics 7/2 (October 2019), 456-461.
JAMA Sarıkaya MZ. On the Generalization of Opial Type Inequality for Convex Function. Konuralp J. Math. 2019;7:456–461.
MLA Sarıkaya, Mehmet Zeki. “On the Generalization of Opial Type Inequality for Convex Function”. Konuralp Journal of Mathematics, vol. 7, no. 2, 2019, pp. 456-61.
Vancouver Sarıkaya MZ. On the Generalization of Opial Type Inequality for Convex Function. Konuralp J. Math. 2019;7(2):456-61.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.