Research Article
BibTex RIS Cite
Year 2019, Volume: 7 Issue: 2, 462 - 469, 15.10.2019

Abstract

References

  • [1] N Abdel-All, S. Mohamed and M. Al-Dossary, Evolution of Generalized Space Curve as a Function of Its Local Geometry, Applied Mathematics, 5 (2014), 2381-2392. doi: 10.4236/am.2014.515230.
  • [2] K. Bharathi and M. Nagaraj, Quaternion valued function of a real variable Serret-Frenet formulae, Indian J. Pure Appl. Math., 16 (1985), 741-756.
  • [3] G. Chirikjian and J. Burdick, A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom., 10 (1994), 343-354.
  • [4] M. Desbrun and M.P. Cani-Gascuel, Active implicit surface for animation, Proc. Graphics Interface Canadian Inf. Process. Soc., (1998) 143-150
  • [5] M. Gage and R.S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96.
  • [6] İ. Gök, O.Z. Okuyucu, F. Kahraman and H.H. Hacisaliho˘glu, On the quaternionic B 2-slant helices in the Euclidean space E4, Adv. Appl. Clifford Algebras, 21(4) (2011), 707-719.
  • [7] M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.
  • [8] N. G¨urb¨uz, Inextensible flows of spacelike, timelike and null curves, Int. J. Contemp. Math. Sciences, 4 (2009), 1599-1604.
  • [9] M. Kass, A. Witkin and D. Terzopoulos, Snakes: active contour models, Proc. 1st Int. Conference on Computer Vision, (1987), 259-268.
  • [10] T. Körpınar and S. Bas¸, Characterization of Quaternionic Curves by Inextenaible Flows, Prespacetime Journal, 7 (2016), 1680-1684.
  • [11] Z. Küçükarslan Yüzbas¸ıand D.W. Yoon, Inextensible Flows of Curves on Lightlike Surfaces, Mathematics, 6 (2018), 224.
  • [12] D.Y. Kwon, F.C. Park and D.P. Chi, Inextensible flows of curves and developable surfaces, Appl. Math. Lett., 18 (2005), 1156-1162.
  • [13] H.Q. Lu, J.S. Todhunter and T.W. Sze, Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP, Image Underst., 56 (1993), 265-285.
  • [14] O.Z. Okuyucu, Characterizations of the quaternionic Mannheim curves in Euclidean space E4, Mathematical Combinatorics, 2 (2013), 44-53.
  • [15] A. Uc¸um, H.A. Erdem and K. ˙Ilarslan, Inextensible flows of partially null and pseudo null curves in semi-euclidean 4-space with index 2, Novi Sad J. Math., 46(1) (2016), 115-129.
  • [16] D.J. Unger, Developable Surfaces in Elastoplastic Fracture Mechanics International Journal of Fracture, 50 (1991), 33-38. http://dx.doi.org/10.1007/BF00032160
  • [17] J.P. Ward, Quaternions and Cayley Numbers; Kluwer Academic Publishers: Boston/London, 1997.
  • [18] A.F. Yıldız, O.Z. Okuyucu and Ö.G. Yıldız, Inextensible Flow Of A Semi-Real Quaternionic Curve In Semi-Euclidean Space R42 , Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 67(1) (2018), 323-332.
  • [19] Ö .G. Yıldız, M. Tosun, and S. Ö . Karakus¸, A note on inextensible flows of curves in En, Int. Electron. J. Geom., 6(2) (2013), 118-124.
  • [20] Ö . G. Yıldız, S. Ersoy, and M. Masal, A note on inextensible flows of curves on oriented surface, CUBO A Mathematical Journal, 16(3) (2014), 11-19.
  • [21] Ö . G. Yıldız and O.Z.Okuyucu, Inextensible Flows of Curves in Lie Groups, Caspian Journal of Mathematical Sciences (CJMS), 2 (2014), 23-32.
  • [22] Ö . G. Yıldız and M. Tosun A Note on Evolution of Curves in the Minkowski Spaces, Adv. Appl. Clifford Algebras, 27 (2017), 2873-2884.

A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$

Year 2019, Volume: 7 Issue: 2, 462 - 469, 15.10.2019

Abstract

In this paper, we investigate the evolution of quaternionic curve in Euclidean 4-space $\mathbb{R}^{4}$. We obtain evolution equations of the Frenet frame and curvatures. Then we give integrability conditions for the evolutions. Finally we give examples of evolution of curvatures.

References

  • [1] N Abdel-All, S. Mohamed and M. Al-Dossary, Evolution of Generalized Space Curve as a Function of Its Local Geometry, Applied Mathematics, 5 (2014), 2381-2392. doi: 10.4236/am.2014.515230.
  • [2] K. Bharathi and M. Nagaraj, Quaternion valued function of a real variable Serret-Frenet formulae, Indian J. Pure Appl. Math., 16 (1985), 741-756.
  • [3] G. Chirikjian and J. Burdick, A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom., 10 (1994), 343-354.
  • [4] M. Desbrun and M.P. Cani-Gascuel, Active implicit surface for animation, Proc. Graphics Interface Canadian Inf. Process. Soc., (1998) 143-150
  • [5] M. Gage and R.S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96.
  • [6] İ. Gök, O.Z. Okuyucu, F. Kahraman and H.H. Hacisaliho˘glu, On the quaternionic B 2-slant helices in the Euclidean space E4, Adv. Appl. Clifford Algebras, 21(4) (2011), 707-719.
  • [7] M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.
  • [8] N. G¨urb¨uz, Inextensible flows of spacelike, timelike and null curves, Int. J. Contemp. Math. Sciences, 4 (2009), 1599-1604.
  • [9] M. Kass, A. Witkin and D. Terzopoulos, Snakes: active contour models, Proc. 1st Int. Conference on Computer Vision, (1987), 259-268.
  • [10] T. Körpınar and S. Bas¸, Characterization of Quaternionic Curves by Inextenaible Flows, Prespacetime Journal, 7 (2016), 1680-1684.
  • [11] Z. Küçükarslan Yüzbas¸ıand D.W. Yoon, Inextensible Flows of Curves on Lightlike Surfaces, Mathematics, 6 (2018), 224.
  • [12] D.Y. Kwon, F.C. Park and D.P. Chi, Inextensible flows of curves and developable surfaces, Appl. Math. Lett., 18 (2005), 1156-1162.
  • [13] H.Q. Lu, J.S. Todhunter and T.W. Sze, Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP, Image Underst., 56 (1993), 265-285.
  • [14] O.Z. Okuyucu, Characterizations of the quaternionic Mannheim curves in Euclidean space E4, Mathematical Combinatorics, 2 (2013), 44-53.
  • [15] A. Uc¸um, H.A. Erdem and K. ˙Ilarslan, Inextensible flows of partially null and pseudo null curves in semi-euclidean 4-space with index 2, Novi Sad J. Math., 46(1) (2016), 115-129.
  • [16] D.J. Unger, Developable Surfaces in Elastoplastic Fracture Mechanics International Journal of Fracture, 50 (1991), 33-38. http://dx.doi.org/10.1007/BF00032160
  • [17] J.P. Ward, Quaternions and Cayley Numbers; Kluwer Academic Publishers: Boston/London, 1997.
  • [18] A.F. Yıldız, O.Z. Okuyucu and Ö.G. Yıldız, Inextensible Flow Of A Semi-Real Quaternionic Curve In Semi-Euclidean Space R42 , Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 67(1) (2018), 323-332.
  • [19] Ö .G. Yıldız, M. Tosun, and S. Ö . Karakus¸, A note on inextensible flows of curves in En, Int. Electron. J. Geom., 6(2) (2013), 118-124.
  • [20] Ö . G. Yıldız, S. Ersoy, and M. Masal, A note on inextensible flows of curves on oriented surface, CUBO A Mathematical Journal, 16(3) (2014), 11-19.
  • [21] Ö . G. Yıldız and O.Z.Okuyucu, Inextensible Flows of Curves in Lie Groups, Caspian Journal of Mathematical Sciences (CJMS), 2 (2014), 23-32.
  • [22] Ö . G. Yıldız and M. Tosun A Note on Evolution of Curves in the Minkowski Spaces, Adv. Appl. Clifford Algebras, 27 (2017), 2873-2884.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Önder Gökmen Yıldız 0000-0002-2760-1223

Özlem İçer This is me

Publication Date October 15, 2019
Submission Date August 3, 2019
Acceptance Date September 28, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Yıldız, Ö. G., & İçer, Ö. (2019). A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$. Konuralp Journal of Mathematics, 7(2), 462-469.
AMA Yıldız ÖG, İçer Ö. A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$. Konuralp J. Math. October 2019;7(2):462-469.
Chicago Yıldız, Önder Gökmen, and Özlem İçer. “A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$”. Konuralp Journal of Mathematics 7, no. 2 (October 2019): 462-69.
EndNote Yıldız ÖG, İçer Ö (October 1, 2019) A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$. Konuralp Journal of Mathematics 7 2 462–469.
IEEE Ö. G. Yıldız and Ö. İçer, “A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$”, Konuralp J. Math., vol. 7, no. 2, pp. 462–469, 2019.
ISNAD Yıldız, Önder Gökmen - İçer, Özlem. “A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$”. Konuralp Journal of Mathematics 7/2 (October 2019), 462-469.
JAMA Yıldız ÖG, İçer Ö. A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$. Konuralp J. Math. 2019;7:462–469.
MLA Yıldız, Önder Gökmen and Özlem İçer. “A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$”. Konuralp Journal of Mathematics, vol. 7, no. 2, 2019, pp. 462-9.
Vancouver Yıldız ÖG, İçer Ö. A Note on Evolution of Quaternionic Curves in the Euclidean Space $\mathbb{R}^{4}$. Konuralp J. Math. 2019;7(2):462-9.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.