Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 2, 355 - 360, 27.10.2020

Abstract

References

  • [1] K. Adegoke, Weighted sums of some second-order sequences, arXiv:1803.09054[math.NT] (2018).
  • [2] P. Anantakitpaisal and K. Kuhapatanakul, Reciprocal sums of the Tribonacci numbers, Journal of Integer sequences 19 (2016), 1–9.
  • [3] J. Feng, More identities on the Tribonacci numbers, Ars Combinatorial C (2011), 73–78.
  • [4] R. Frontczak, Sums of Tribonacci and Tribonacci-Lucas numbers, International Journal of Mathematical Analysis 12:1 (2018), 19–24.
  • [5] N. Irmak and M. Alp, Tribonacci numbers with indices in arithmetic progression and their sums, Miskolc Mathematical Notes 14:1 (2013), 125–133.
  • [6] E. Kilic, Tribonacci sequences with certain indices and their sums, Ars Combinatorial 86 (2008), 13–22.
  • [7] D. V. Shah, Some Tribonacci identities, Mathematics Today 27 (2011), 1–9.

Weighted Tribonacci Sums

Year 2020, Volume: 8 Issue: 2, 355 - 360, 27.10.2020

Abstract

We derive various weighted summation identities, including binomial and double binomial identities, for Tribonacci numbers. Our results contain some previously known results as special cases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                



References

  • [1] K. Adegoke, Weighted sums of some second-order sequences, arXiv:1803.09054[math.NT] (2018).
  • [2] P. Anantakitpaisal and K. Kuhapatanakul, Reciprocal sums of the Tribonacci numbers, Journal of Integer sequences 19 (2016), 1–9.
  • [3] J. Feng, More identities on the Tribonacci numbers, Ars Combinatorial C (2011), 73–78.
  • [4] R. Frontczak, Sums of Tribonacci and Tribonacci-Lucas numbers, International Journal of Mathematical Analysis 12:1 (2018), 19–24.
  • [5] N. Irmak and M. Alp, Tribonacci numbers with indices in arithmetic progression and their sums, Miskolc Mathematical Notes 14:1 (2013), 125–133.
  • [6] E. Kilic, Tribonacci sequences with certain indices and their sums, Ars Combinatorial 86 (2008), 13–22.
  • [7] D. V. Shah, Some Tribonacci identities, Mathematics Today 27 (2011), 1–9.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Kunle Adegoke

Publication Date October 27, 2020
Submission Date June 7, 2018
Acceptance Date September 14, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Adegoke, K. (2020). Weighted Tribonacci Sums. Konuralp Journal of Mathematics, 8(2), 355-360.
AMA Adegoke K. Weighted Tribonacci Sums. Konuralp J. Math. October 2020;8(2):355-360.
Chicago Adegoke, Kunle. “Weighted Tribonacci Sums”. Konuralp Journal of Mathematics 8, no. 2 (October 2020): 355-60.
EndNote Adegoke K (October 1, 2020) Weighted Tribonacci Sums. Konuralp Journal of Mathematics 8 2 355–360.
IEEE K. Adegoke, “Weighted Tribonacci Sums”, Konuralp J. Math., vol. 8, no. 2, pp. 355–360, 2020.
ISNAD Adegoke, Kunle. “Weighted Tribonacci Sums”. Konuralp Journal of Mathematics 8/2 (October 2020), 355-360.
JAMA Adegoke K. Weighted Tribonacci Sums. Konuralp J. Math. 2020;8:355–360.
MLA Adegoke, Kunle. “Weighted Tribonacci Sums”. Konuralp Journal of Mathematics, vol. 8, no. 2, 2020, pp. 355-60.
Vancouver Adegoke K. Weighted Tribonacci Sums. Konuralp J. Math. 2020;8(2):355-60.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.