Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 2, 384 - 390, 27.10.2020

Abstract

References

  • [1] I. Akkus and O. Kecilioglu, Split Fibonacci and Lucas octonions. Adv. Appl. Clifford Algebras Vol.25, No.3 (2015), 517–525.
  • [2] J. Baez, The octonions, Bull. Amer. Math. Soc. Vol.39 No.2 (2002), 145-205.
  • [3] G. Bilgici, U. Tokes¸er and Z. U¨ nal, Fibonacci and Lucas Sedenions. J. Integer Seq., Vol.20, 17.1.8, (2017), 11p.
  • [4] P. Catarino, k-Pell-Lukas and Modified k-Pell sedenions. Asian-Eur. J. Math. (2018), S1793557119500189.
  • [5] R. E. Cawagas, On the structure and zero divisors of the Cayley-Dickson sedenion algebra, Discuss. Math. Gen. Algebra Appl., Vol.24, (2004), 251–265.
  • [6] K. Imaeda and M. Imaeda, Sedenions: algebra and analysis, Applied Mathematics and Computation, Vol.115, (2000), 77-88.
  • [7] O. Kecilioglu and I. Akkus, The Fibonacci octonions, Adv. Appl. Clifford Algebra, Vol.25, (2015), 151–158.
  • [8] R. Serodio, On octonionic polynomials. Adv. Appl. Clifford Algebras Vol.17, No.2 (2007), 245–258.
  • [9] A. G. Shannon, P. G. Anderson, and A. F. Horadam, Properties of Cordonnier, Perrin and van der laan numbers, International Journal of Mathematical Education in Science and Technology, Vol.37, No.7 (2006), 825-831.
  • [10] Y. Tasyurdu and A. Akpınar, Padovan and Pell-Padovan Octanions. Turk. J. Math. Comput. Sci., Vol.11(Special Issue), (2019), 114–222.
  • [11] Y. Tian, Matrix representations of octonions and their applications. Adv. Appl. Clifford Algebras Vol.10, No.1 (2000), 61–90.

Perrin Octonions and Perrin Sedenions

Year 2020, Volume: 8 Issue: 2, 384 - 390, 27.10.2020

Abstract

In this study, we introduce new classes of octonion and sedenion numbers associated with Perrin numbers. We define Perrin octonions and Perrin sedenions by using the Perrin numbers. We give some relationship between Perrin octonions, Perrin sedenions and Perrin numbers. Moreover we obtain the generating functions, Binet formulas and sums formulas of them.                                                                                                                                                                                                                                                                       

References

  • [1] I. Akkus and O. Kecilioglu, Split Fibonacci and Lucas octonions. Adv. Appl. Clifford Algebras Vol.25, No.3 (2015), 517–525.
  • [2] J. Baez, The octonions, Bull. Amer. Math. Soc. Vol.39 No.2 (2002), 145-205.
  • [3] G. Bilgici, U. Tokes¸er and Z. U¨ nal, Fibonacci and Lucas Sedenions. J. Integer Seq., Vol.20, 17.1.8, (2017), 11p.
  • [4] P. Catarino, k-Pell-Lukas and Modified k-Pell sedenions. Asian-Eur. J. Math. (2018), S1793557119500189.
  • [5] R. E. Cawagas, On the structure and zero divisors of the Cayley-Dickson sedenion algebra, Discuss. Math. Gen. Algebra Appl., Vol.24, (2004), 251–265.
  • [6] K. Imaeda and M. Imaeda, Sedenions: algebra and analysis, Applied Mathematics and Computation, Vol.115, (2000), 77-88.
  • [7] O. Kecilioglu and I. Akkus, The Fibonacci octonions, Adv. Appl. Clifford Algebra, Vol.25, (2015), 151–158.
  • [8] R. Serodio, On octonionic polynomials. Adv. Appl. Clifford Algebras Vol.17, No.2 (2007), 245–258.
  • [9] A. G. Shannon, P. G. Anderson, and A. F. Horadam, Properties of Cordonnier, Perrin and van der laan numbers, International Journal of Mathematical Education in Science and Technology, Vol.37, No.7 (2006), 825-831.
  • [10] Y. Tasyurdu and A. Akpınar, Padovan and Pell-Padovan Octanions. Turk. J. Math. Comput. Sci., Vol.11(Special Issue), (2019), 114–222.
  • [11] Y. Tian, Matrix representations of octonions and their applications. Adv. Appl. Clifford Algebras Vol.10, No.1 (2000), 61–90.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Yasemin Taşyurdu 0000-0002-9011-8269

Ayşe Akpınar

Publication Date October 27, 2020
Submission Date September 3, 2019
Acceptance Date October 22, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Taşyurdu, Y., & Akpınar, A. (2020). Perrin Octonions and Perrin Sedenions. Konuralp Journal of Mathematics, 8(2), 384-390.
AMA Taşyurdu Y, Akpınar A. Perrin Octonions and Perrin Sedenions. Konuralp J. Math. October 2020;8(2):384-390.
Chicago Taşyurdu, Yasemin, and Ayşe Akpınar. “Perrin Octonions and Perrin Sedenions”. Konuralp Journal of Mathematics 8, no. 2 (October 2020): 384-90.
EndNote Taşyurdu Y, Akpınar A (October 1, 2020) Perrin Octonions and Perrin Sedenions. Konuralp Journal of Mathematics 8 2 384–390.
IEEE Y. Taşyurdu and A. Akpınar, “Perrin Octonions and Perrin Sedenions”, Konuralp J. Math., vol. 8, no. 2, pp. 384–390, 2020.
ISNAD Taşyurdu, Yasemin - Akpınar, Ayşe. “Perrin Octonions and Perrin Sedenions”. Konuralp Journal of Mathematics 8/2 (October 2020), 384-390.
JAMA Taşyurdu Y, Akpınar A. Perrin Octonions and Perrin Sedenions. Konuralp J. Math. 2020;8:384–390.
MLA Taşyurdu, Yasemin and Ayşe Akpınar. “Perrin Octonions and Perrin Sedenions”. Konuralp Journal of Mathematics, vol. 8, no. 2, 2020, pp. 384-90.
Vancouver Taşyurdu Y, Akpınar A. Perrin Octonions and Perrin Sedenions. Konuralp J. Math. 2020;8(2):384-90.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.