Research Article
BibTex RIS Cite
Year 2021, Volume: 9 Issue: 1, 159 - 163, 28.04.2021

Abstract

References

  • [1] P. Alexandroff and P. Urysohn, Zur Theorie der Topologischen Raume. Math. Ann. 92 (1924): 258-266 .
  • [2] R.G. Bartle, Nets and filters in topology. Amer. Math. Monthly. 62 (1955): 551-557.
  • [3] M. Katetov, Uber H-abgeschlossene und bikompakte Raume¨. Casopis Pestˇ. Mat. Fys. 69 (1940): 36-49.
  • [4] M.H. Stone, Applications of the theory of Boolean rings to general topology . Trans. Amer . Math. Soc. 41 (1937): 374-481.
  • [5] J.R. Porter and R.G. Woods, Ultra-Hausdorff H-closed extensions. Pac. J. Math. 86 (1979)(2).
  • [6] J.R. Porter and R.G. Woods, Extensions of Hausdorff spaces. Pac. J. Math. 103 (1982) (1).
  • [7] C.T. Liu, Absolutely closed spaces. Trans. Amer. Math. Soc. 130 (1968): 86-104.
  • [8] B. Banaschewski, On the Katetovˇ and Stone-Cech Extensions. Can. Math. Bull. 2 (1959)(1).

Construction of the Katetov Extension of a Hausdorff Space

Year 2021, Volume: 9 Issue: 1, 159 - 163, 28.04.2021

Abstract

Katetov extension $\kappa X$ of Hausdorff space $X$ has been studied extensively as the largest H-closed extension of a Hausdorff space. Recall that, a Hausdorff space $X$ is said to be an H-closed space if it is closed in every Hausdorff space in which it is embedded. Although Kat\v{e}tov extensions of Hausdorff spaces have been extensively studied, to date there has been very little work on either its construction or its structure (topology). In this paper, we give the detailed algorithm for constructing such a space by using filters on $X$. The basis generating the topology on $\kappa X$ contains the open sets of the form $V\cup\{\Gamma: V\in\Gamma\in \kappa X-X\}$ or $U\subset X$ where both $U$ and $V$ are open subsets of $X$ and $\Gamma$ is a non-convergent ultra-filter on $X$ containing $V$. Moreover, using simple approach, it is proved that Kat\v{e}tov extension $\kappa X$ is a Hausdorff space, H-closed, maximal and unique extension for $X$.

References

  • [1] P. Alexandroff and P. Urysohn, Zur Theorie der Topologischen Raume. Math. Ann. 92 (1924): 258-266 .
  • [2] R.G. Bartle, Nets and filters in topology. Amer. Math. Monthly. 62 (1955): 551-557.
  • [3] M. Katetov, Uber H-abgeschlossene und bikompakte Raume¨. Casopis Pestˇ. Mat. Fys. 69 (1940): 36-49.
  • [4] M.H. Stone, Applications of the theory of Boolean rings to general topology . Trans. Amer . Math. Soc. 41 (1937): 374-481.
  • [5] J.R. Porter and R.G. Woods, Ultra-Hausdorff H-closed extensions. Pac. J. Math. 86 (1979)(2).
  • [6] J.R. Porter and R.G. Woods, Extensions of Hausdorff spaces. Pac. J. Math. 103 (1982) (1).
  • [7] C.T. Liu, Absolutely closed spaces. Trans. Amer. Math. Soc. 130 (1968): 86-104.
  • [8] B. Banaschewski, On the Katetovˇ and Stone-Cech Extensions. Can. Math. Bull. 2 (1959)(1).
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Marco Mpimbo 0000-0001-6108-0065

Mayila Shega This is me

Publication Date April 28, 2021
Submission Date May 18, 2019
Acceptance Date September 22, 2020
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA Mpimbo, M., & Shega, M. (2021). Construction of the Katetov Extension of a Hausdorff Space. Konuralp Journal of Mathematics, 9(1), 159-163.
AMA Mpimbo M, Shega M. Construction of the Katetov Extension of a Hausdorff Space. Konuralp J. Math. April 2021;9(1):159-163.
Chicago Mpimbo, Marco, and Mayila Shega. “Construction of the Katetov Extension of a Hausdorff Space”. Konuralp Journal of Mathematics 9, no. 1 (April 2021): 159-63.
EndNote Mpimbo M, Shega M (April 1, 2021) Construction of the Katetov Extension of a Hausdorff Space. Konuralp Journal of Mathematics 9 1 159–163.
IEEE M. Mpimbo and M. Shega, “Construction of the Katetov Extension of a Hausdorff Space”, Konuralp J. Math., vol. 9, no. 1, pp. 159–163, 2021.
ISNAD Mpimbo, Marco - Shega, Mayila. “Construction of the Katetov Extension of a Hausdorff Space”. Konuralp Journal of Mathematics 9/1 (April 2021), 159-163.
JAMA Mpimbo M, Shega M. Construction of the Katetov Extension of a Hausdorff Space. Konuralp J. Math. 2021;9:159–163.
MLA Mpimbo, Marco and Mayila Shega. “Construction of the Katetov Extension of a Hausdorff Space”. Konuralp Journal of Mathematics, vol. 9, no. 1, 2021, pp. 159-63.
Vancouver Mpimbo M, Shega M. Construction of the Katetov Extension of a Hausdorff Space. Konuralp J. Math. 2021;9(1):159-63.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.