Research Article
BibTex RIS Cite
Year 2021, Volume: 9 Issue: 1, 154 - 158, 28.04.2021

Abstract

References

  • [1] A.S. Asratian, T.M.J. Denley and R. Hoggkvist, Bipartite graphs and their applications, Cambridge Uni. Press,1998, United Kingdom.
  • [2] L.M. Batten, Combinatorics of finite geometries ,Cambridge University Press, Cambridge-NewYork, 1986.
  • [3] I. Gunaltılı, A. Ulukan, and S¸. Olgun, Some Properties Of Fınıte f0,1g-Graphs , Konualp Journal Of Mathematics,1(1), 2013, 34-39.
  • [4] I. Gunaltılı, Classification Of Some f0,1g-Semigraphs, Internation Journal of Innovative Research in Computer Science & Technology,4(1),2016,10-12.
  • [5] F. Harary, D. Hsu and Z. Miller, The biparticity of a graph, J. Graph Theory 1, 1977, 131-133.
  • [6] M. Mulder,(0, l )-graph and n-cubes, Discrete mathematics 28, 1979, 179- 188.
  • [7] C. Vasudev, Combinatorics and Graph Theory, New Age Publications(Academic), India, 2007.
  • [8] D.B. West, Introduction to Graph Theory, Prentice-Hall, Englewood Clins, NJ, 1996.

On The Basic Properties of Linear Graphs - I

Year 2021, Volume: 9 Issue: 1, 154 - 158, 28.04.2021

Abstract

A linear graph is a bipartite graph with parts $\mathcal{P}$ and $\mathcal{L}$ that have propertites: LG1: Any two distinct vertices of $\mathcal{P}$ have exactly common neighbour one vertex. LG2: $\delta(G)\geq 2$. In this paper, we determined basic properties of finite linear graph.

References

  • [1] A.S. Asratian, T.M.J. Denley and R. Hoggkvist, Bipartite graphs and their applications, Cambridge Uni. Press,1998, United Kingdom.
  • [2] L.M. Batten, Combinatorics of finite geometries ,Cambridge University Press, Cambridge-NewYork, 1986.
  • [3] I. Gunaltılı, A. Ulukan, and S¸. Olgun, Some Properties Of Fınıte f0,1g-Graphs , Konualp Journal Of Mathematics,1(1), 2013, 34-39.
  • [4] I. Gunaltılı, Classification Of Some f0,1g-Semigraphs, Internation Journal of Innovative Research in Computer Science & Technology,4(1),2016,10-12.
  • [5] F. Harary, D. Hsu and Z. Miller, The biparticity of a graph, J. Graph Theory 1, 1977, 131-133.
  • [6] M. Mulder,(0, l )-graph and n-cubes, Discrete mathematics 28, 1979, 179- 188.
  • [7] C. Vasudev, Combinatorics and Graph Theory, New Age Publications(Academic), India, 2007.
  • [8] D.B. West, Introduction to Graph Theory, Prentice-Hall, Englewood Clins, NJ, 1996.
There are 8 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ramazan Sunar 0000-0001-8107-5618

İbrahim Günaltılı

Publication Date April 28, 2021
Submission Date March 9, 2020
Acceptance Date March 27, 2021
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA Sunar, R., & Günaltılı, İ. (2021). On The Basic Properties of Linear Graphs - I. Konuralp Journal of Mathematics, 9(1), 154-158.
AMA Sunar R, Günaltılı İ. On The Basic Properties of Linear Graphs - I. Konuralp J. Math. April 2021;9(1):154-158.
Chicago Sunar, Ramazan, and İbrahim Günaltılı. “On The Basic Properties of Linear Graphs - I”. Konuralp Journal of Mathematics 9, no. 1 (April 2021): 154-58.
EndNote Sunar R, Günaltılı İ (April 1, 2021) On The Basic Properties of Linear Graphs - I. Konuralp Journal of Mathematics 9 1 154–158.
IEEE R. Sunar and İ. Günaltılı, “On The Basic Properties of Linear Graphs - I”, Konuralp J. Math., vol. 9, no. 1, pp. 154–158, 2021.
ISNAD Sunar, Ramazan - Günaltılı, İbrahim. “On The Basic Properties of Linear Graphs - I”. Konuralp Journal of Mathematics 9/1 (April 2021), 154-158.
JAMA Sunar R, Günaltılı İ. On The Basic Properties of Linear Graphs - I. Konuralp J. Math. 2021;9:154–158.
MLA Sunar, Ramazan and İbrahim Günaltılı. “On The Basic Properties of Linear Graphs - I”. Konuralp Journal of Mathematics, vol. 9, no. 1, 2021, pp. 154-8.
Vancouver Sunar R, Günaltılı İ. On The Basic Properties of Linear Graphs - I. Konuralp J. Math. 2021;9(1):154-8.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.