Research Article
BibTex RIS Cite

Year 2021, Volume: 9 Issue: 2, 337 - 341, 15.10.2021

Abstract

References

  • [1] S. Araci, E. Agyüz, M. Acikgoz, On a q-analog of some numbers and polynomials, J. Inequal. Appl., 19, 2015 doi:10.1186/s13660-014-0542-y.
  • [2] Y.K. Cho, T. Kim, T. Mansour, S.-H. Rim, Higher order q-Daehee polynomials, J. Comput. Anal. Appl., 19 (1), 2015,167-173.
  • [3] J. Diamond, The p-adic log gamma function and p-adic Euler constant, Trans. Amer. Math. Soc., 233, 1977, 321-337.
  • [4] U. Duran, M. Acikgoz, On p-adic gamma function related to q-Daehee polynomials and numbers, accepted for publicationin Proyecciones J. Math., 2018.
  • [5] B. N. Guo, F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, Anal. Appl., 19 (1), 2015,167-173.
  • [6] Ö. Ç. Havara and H. Menken, On the Volkenborn integral of the q-extension of the p-adic gamma function, J. Math. Anal.,8 (2), 2017, 64-72.
  • [7] Ö. Ç. Havare and H. Menken, The Volkenborn integral of the p-adic gamma function, Int. J. Adv. Appl. Funct., 5 (2),2018, 56-59.
  • [8] Y. S. Kim, q-analogues of p-adic gamma functions and p-adic Euler constants, Comm. Korean Math. Soc., 13 (4), 1998,735–741.
  • [9] T. Kim, S.-H. Lee, T. Mansour and J.-J. Seo, A note on q-Daehee polynomials and numbers, Adv. Stud. Contemp. Math.,24 (2), 2014, 155-160.
  • [10] D. S. Kim and T. Kim, Daehee numbers and polynomials, Appl. Math. Sci., 7 (120), 2013, 5969-5976.
  • [11] N. Koblitz, p-adic numbers, p-adic analysis, and Zeta functions (Springer-Verlag, New York Inc, 1977).
  • [12] K. Mahler, An interpolation series for continuous functions of a p-adic variable, J. Reine Angew. Math., 199, 1958, 23-34.
  • [13] H. Menken, A. Körükçü, Some properties of the q-extension of the p-adic gamma function, Abst. Appl. Anal., Volume2013, Article ID 176470, 4 pages.
  • [14] Y. Morita, A p-adic analogue of the gamma-function, J. Fac. Sci., 22 (2), 1975, 255-266.
  • [15] H. Ozden, I. N. Cangul, Y. Simsek, Remarks on q-Bernoulli numbers associated with Daehee numbers, Adv. Stud. Contemp.Math., 18 (1), 2009, 41-48.
  • [16] A. M. Robert, A course in p-adic analysis (Springer-Verlag New York, Inc., 2000).
  • [17] Y. Simsek, Apostol type Daehee numbers and polynomials, Adv. Stud. Contemp. Math.,

Relationships between Mahler Expansion and Higher Order q-Daehee Polynomials

Year 2021, Volume: 9 Issue: 2, 337 - 341, 15.10.2021

Abstract

In this paper, we derive multifarious relationships among the two types of higher order q-Daehee polynomials and p-adic gamma function via Mahler theorem. Also, we compute some weighted p-adic q-integrals of the derivative of p-adic gamma function related to the Stirling numbers of the both kinds and the q-Bernoulli polynomials of order k.

References

  • [1] S. Araci, E. Agyüz, M. Acikgoz, On a q-analog of some numbers and polynomials, J. Inequal. Appl., 19, 2015 doi:10.1186/s13660-014-0542-y.
  • [2] Y.K. Cho, T. Kim, T. Mansour, S.-H. Rim, Higher order q-Daehee polynomials, J. Comput. Anal. Appl., 19 (1), 2015,167-173.
  • [3] J. Diamond, The p-adic log gamma function and p-adic Euler constant, Trans. Amer. Math. Soc., 233, 1977, 321-337.
  • [4] U. Duran, M. Acikgoz, On p-adic gamma function related to q-Daehee polynomials and numbers, accepted for publicationin Proyecciones J. Math., 2018.
  • [5] B. N. Guo, F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, Anal. Appl., 19 (1), 2015,167-173.
  • [6] Ö. Ç. Havara and H. Menken, On the Volkenborn integral of the q-extension of the p-adic gamma function, J. Math. Anal.,8 (2), 2017, 64-72.
  • [7] Ö. Ç. Havare and H. Menken, The Volkenborn integral of the p-adic gamma function, Int. J. Adv. Appl. Funct., 5 (2),2018, 56-59.
  • [8] Y. S. Kim, q-analogues of p-adic gamma functions and p-adic Euler constants, Comm. Korean Math. Soc., 13 (4), 1998,735–741.
  • [9] T. Kim, S.-H. Lee, T. Mansour and J.-J. Seo, A note on q-Daehee polynomials and numbers, Adv. Stud. Contemp. Math.,24 (2), 2014, 155-160.
  • [10] D. S. Kim and T. Kim, Daehee numbers and polynomials, Appl. Math. Sci., 7 (120), 2013, 5969-5976.
  • [11] N. Koblitz, p-adic numbers, p-adic analysis, and Zeta functions (Springer-Verlag, New York Inc, 1977).
  • [12] K. Mahler, An interpolation series for continuous functions of a p-adic variable, J. Reine Angew. Math., 199, 1958, 23-34.
  • [13] H. Menken, A. Körükçü, Some properties of the q-extension of the p-adic gamma function, Abst. Appl. Anal., Volume2013, Article ID 176470, 4 pages.
  • [14] Y. Morita, A p-adic analogue of the gamma-function, J. Fac. Sci., 22 (2), 1975, 255-266.
  • [15] H. Ozden, I. N. Cangul, Y. Simsek, Remarks on q-Bernoulli numbers associated with Daehee numbers, Adv. Stud. Contemp.Math., 18 (1), 2009, 41-48.
  • [16] A. M. Robert, A course in p-adic analysis (Springer-Verlag New York, Inc., 2000).
  • [17] Y. Simsek, Apostol type Daehee numbers and polynomials, Adv. Stud. Contemp. Math.,
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ugur Duran 0000-0002-5717-1199

Mehmet Acikgoz 0000-0003-1091-9697

Publication Date October 15, 2021
Submission Date June 10, 2019
Acceptance Date May 25, 2021
Published in Issue Year 2021 Volume: 9 Issue: 2

Cite

APA Duran, U., & Acikgoz, M. (2021). Relationships between Mahler Expansion and Higher Order q-Daehee Polynomials. Konuralp Journal of Mathematics, 9(2), 337-341.
AMA Duran U, Acikgoz M. Relationships between Mahler Expansion and Higher Order q-Daehee Polynomials. Konuralp J. Math. October 2021;9(2):337-341.
Chicago Duran, Ugur, and Mehmet Acikgoz. “Relationships Between Mahler Expansion and Higher Order Q-Daehee Polynomials”. Konuralp Journal of Mathematics 9, no. 2 (October 2021): 337-41.
EndNote Duran U, Acikgoz M (October 1, 2021) Relationships between Mahler Expansion and Higher Order q-Daehee Polynomials. Konuralp Journal of Mathematics 9 2 337–341.
IEEE U. Duran and M. Acikgoz, “Relationships between Mahler Expansion and Higher Order q-Daehee Polynomials”, Konuralp J. Math., vol. 9, no. 2, pp. 337–341, 2021.
ISNAD Duran, Ugur - Acikgoz, Mehmet. “Relationships Between Mahler Expansion and Higher Order Q-Daehee Polynomials”. Konuralp Journal of Mathematics 9/2 (October2021), 337-341.
JAMA Duran U, Acikgoz M. Relationships between Mahler Expansion and Higher Order q-Daehee Polynomials. Konuralp J. Math. 2021;9:337–341.
MLA Duran, Ugur and Mehmet Acikgoz. “Relationships Between Mahler Expansion and Higher Order Q-Daehee Polynomials”. Konuralp Journal of Mathematics, vol. 9, no. 2, 2021, pp. 337-41.
Vancouver Duran U, Acikgoz M. Relationships between Mahler Expansion and Higher Order q-Daehee Polynomials. Konuralp J. Math. 2021;9(2):337-41.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.