A. Gelişken, On a system of rational difference equation, J. Computational Analysis and Applications, 23(4) (2017), 593-606.
D. Simsek, F. Abdullayev, On the recursive sequence x_{n+1}=((x_{n-(4k+3)})/(1+∏_{t=0}²x_{n-(k+1)t-k})), Journal of Mathematical Sciences, 6(222) (2017), 762-771.
D. Simsek, F. Abdullayev, On the recursive sequence x_{n+1}=((x_{n-(k+1)})/(1+x_{n}x_{n-1}...x_{n-k})), Journal of Mathematical Sciences, 234(1) (2018), 73-81.
E. M. Elsayed, F. Alzahrani, H. S. Alayachi, Formulas and properties of some class of nonlinear difference equation, J. Computational Analysis and Applications, 24(8) (2018),1517-1531.
M. B. Almatrafi, E. M. Elsayed, F. Alzahrani, Investigating some properties of a fourth order difference equation, J. Computational Analysis and Applications, 28(2) (2020), 243-253.
R. Abo-Zeid, Behavior of solutions of higher order difference equation, Alabama Journal of Mathematics, 42(2018), 1-10.
R. Karatas, Global behavior of a higher order difference equation, Computers and Mathematics with Applications, 60(2010), 830-839.
R. Karatas, On the solutions of the recursive sequence x_{n+1}=((αx_{n-(2k+1)})/(-a+x_{n-k}x_{n-(2k+1)})), Fasciculi Mathematici, 45(2010), 37-45.
S. Ergin, R. Karatas, On the solutions of the recursive sequence x_{n+1}=((αx_{n-k})/(a-∏_{i=0}^{k}x_{n-i})), Thai Journal of Mathematics, 14(2) (2016), 391-397.
V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of High Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
A Solution Form of A Higher Order Difference Equation
Year 2021,
Volume: 9 Issue: 2, 316 - 323, 15.10.2021
The main aim of this paper is to investigate the solutions of the difference equation \[ x_{n+1}=\frac{(-1)^{n}ax_{n-2k}}{a+(-1)^{n}\prod\limits_{i=0}^{2k}x_{n-i}% }\text{ },~n=0,1,... \] where $k$ is a positive integer and initial conditions are non zero real numbers with $\prod\limits_{i=0}^{2k}x_{n-i}\neq\mp a.$
A. Gelişken, On a system of rational difference equation, J. Computational Analysis and Applications, 23(4) (2017), 593-606.
D. Simsek, F. Abdullayev, On the recursive sequence x_{n+1}=((x_{n-(4k+3)})/(1+∏_{t=0}²x_{n-(k+1)t-k})), Journal of Mathematical Sciences, 6(222) (2017), 762-771.
D. Simsek, F. Abdullayev, On the recursive sequence x_{n+1}=((x_{n-(k+1)})/(1+x_{n}x_{n-1}...x_{n-k})), Journal of Mathematical Sciences, 234(1) (2018), 73-81.
E. M. Elsayed, F. Alzahrani, H. S. Alayachi, Formulas and properties of some class of nonlinear difference equation, J. Computational Analysis and Applications, 24(8) (2018),1517-1531.
M. B. Almatrafi, E. M. Elsayed, F. Alzahrani, Investigating some properties of a fourth order difference equation, J. Computational Analysis and Applications, 28(2) (2020), 243-253.
R. Abo-Zeid, Behavior of solutions of higher order difference equation, Alabama Journal of Mathematics, 42(2018), 1-10.
R. Karatas, Global behavior of a higher order difference equation, Computers and Mathematics with Applications, 60(2010), 830-839.
R. Karatas, On the solutions of the recursive sequence x_{n+1}=((αx_{n-(2k+1)})/(-a+x_{n-k}x_{n-(2k+1)})), Fasciculi Mathematici, 45(2010), 37-45.
S. Ergin, R. Karatas, On the solutions of the recursive sequence x_{n+1}=((αx_{n-k})/(a-∏_{i=0}^{k}x_{n-i})), Thai Journal of Mathematics, 14(2) (2016), 391-397.
V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of High Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
Karataş, R., & Gelişken, A. (2021). A Solution Form of A Higher Order Difference Equation. Konuralp Journal of Mathematics, 9(2), 316-323.
AMA
Karataş R, Gelişken A. A Solution Form of A Higher Order Difference Equation. Konuralp J. Math. October 2021;9(2):316-323.
Chicago
Karataş, Ramazan, and Ali Gelişken. “A Solution Form of A Higher Order Difference Equation”. Konuralp Journal of Mathematics 9, no. 2 (October 2021): 316-23.
EndNote
Karataş R, Gelişken A (October 1, 2021) A Solution Form of A Higher Order Difference Equation. Konuralp Journal of Mathematics 9 2 316–323.
IEEE
R. Karataş and A. Gelişken, “A Solution Form of A Higher Order Difference Equation”, Konuralp J. Math., vol. 9, no. 2, pp. 316–323, 2021.
ISNAD
Karataş, Ramazan - Gelişken, Ali. “A Solution Form of A Higher Order Difference Equation”. Konuralp Journal of Mathematics 9/2 (October 2021), 316-323.
JAMA
Karataş R, Gelişken A. A Solution Form of A Higher Order Difference Equation. Konuralp J. Math. 2021;9:316–323.
MLA
Karataş, Ramazan and Ali Gelişken. “A Solution Form of A Higher Order Difference Equation”. Konuralp Journal of Mathematics, vol. 9, no. 2, 2021, pp. 316-23.
Vancouver
Karataş R, Gelişken A. A Solution Form of A Higher Order Difference Equation. Konuralp J. Math. 2021;9(2):316-23.