Research Article
BibTex RIS Cite

Intuitionistic Smooth Fuzzy $\theta$-Closure Operator

Year 2022, Volume: 10 Issue: 1, 92 - 102, 15.04.2022

Abstract

In this paper, the concepts of intuitionistic $r$-fuzzy $\theta$-open ($\theta$-closed) sets and intuitionistic $r$-fuzzy $\theta$-closure operator are introduced and discussed in intuitionistic smooth fuzzy topological spaces. As applications of these concepts, certain functions are characterized in terms of intuitionistic smooth fuzzy $\theta$-closure operator.

References

  • [1] S. E. Abbas and M. Azab Abd-allah, Some properties of Intuitionistic R-fuzzy semi-open sets, J. Fuzzy Math., 13 (2) (2005), 407-422.
  • [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
  • [3] D. Coker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math., 4(2) (1996), 749-764.
  • [4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88 (1997), 81-89.
  • [5] D. Coker and M. Demirci, On intuitionistic fuzzy points, Notes on intuitionistic fuzzy sets, 1(1995), 79-84.
  • [6] J. Gupta1 and M. Shrivastava, Semi Pre Open Sets and Semi Pre Continuity in Sostak Intuitionistic Fuzzy Topological Space, International Journal of Advance Research in Science Engineering, 6 (11) 92017, 602-610.
  • [7] I. M. Hanafy, On fuzzy g-open sets and fuzzy g-continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math., 10 (1) (2002), 9-19.
  • [8] S. K. Samanta, T. K. Mondal, Intuitionistic gradation of openness: intuitionistic fuzzy topology, Busefal 73 (1997), 8-17.
  • [9] S. K. Samanta and T. K. Mondal, On intuitionistic gradation of openness, Fuzzy Sets and Systems, 131 (2002),323-336.
  • [10] P. K. Lim, S. R. Kim and K. Hur, Intuitionistic smooth topological spaces, Journal of Korean Institute of Intelligent Systems, 20 (6) (2010), 875-883. https://doi.org/10.5391/JKIIS.2010.20.6.875
  • [11] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.
Year 2022, Volume: 10 Issue: 1, 92 - 102, 15.04.2022

Abstract

References

  • [1] S. E. Abbas and M. Azab Abd-allah, Some properties of Intuitionistic R-fuzzy semi-open sets, J. Fuzzy Math., 13 (2) (2005), 407-422.
  • [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
  • [3] D. Coker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math., 4(2) (1996), 749-764.
  • [4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88 (1997), 81-89.
  • [5] D. Coker and M. Demirci, On intuitionistic fuzzy points, Notes on intuitionistic fuzzy sets, 1(1995), 79-84.
  • [6] J. Gupta1 and M. Shrivastava, Semi Pre Open Sets and Semi Pre Continuity in Sostak Intuitionistic Fuzzy Topological Space, International Journal of Advance Research in Science Engineering, 6 (11) 92017, 602-610.
  • [7] I. M. Hanafy, On fuzzy g-open sets and fuzzy g-continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math., 10 (1) (2002), 9-19.
  • [8] S. K. Samanta, T. K. Mondal, Intuitionistic gradation of openness: intuitionistic fuzzy topology, Busefal 73 (1997), 8-17.
  • [9] S. K. Samanta and T. K. Mondal, On intuitionistic gradation of openness, Fuzzy Sets and Systems, 131 (2002),323-336.
  • [10] P. K. Lim, S. R. Kim and K. Hur, Intuitionistic smooth topological spaces, Journal of Korean Institute of Intelligent Systems, 20 (6) (2010), 875-883. https://doi.org/10.5391/JKIIS.2010.20.6.875
  • [11] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

S. Jafari

T Menagadevi This is me

P Maragatha Meenakshı This is me

N. Rajesh

Publication Date April 15, 2022
Submission Date February 13, 2022
Acceptance Date March 22, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Jafari, S., Menagadevi, T., Maragatha Meenakshı, P., Rajesh, N. (2022). Intuitionistic Smooth Fuzzy $\theta$-Closure Operator. Konuralp Journal of Mathematics, 10(1), 92-102.
AMA Jafari S, Menagadevi T, Maragatha Meenakshı P, Rajesh N. Intuitionistic Smooth Fuzzy $\theta$-Closure Operator. Konuralp J. Math. April 2022;10(1):92-102.
Chicago Jafari, S., T Menagadevi, P Maragatha Meenakshı, and N. Rajesh. “Intuitionistic Smooth Fuzzy $\theta$-Closure Operator”. Konuralp Journal of Mathematics 10, no. 1 (April 2022): 92-102.
EndNote Jafari S, Menagadevi T, Maragatha Meenakshı P, Rajesh N (April 1, 2022) Intuitionistic Smooth Fuzzy $\theta$-Closure Operator. Konuralp Journal of Mathematics 10 1 92–102.
IEEE S. Jafari, T. Menagadevi, P. Maragatha Meenakshı, and N. Rajesh, “Intuitionistic Smooth Fuzzy $\theta$-Closure Operator”, Konuralp J. Math., vol. 10, no. 1, pp. 92–102, 2022.
ISNAD Jafari, S. et al. “Intuitionistic Smooth Fuzzy $\theta$-Closure Operator”. Konuralp Journal of Mathematics 10/1 (April 2022), 92-102.
JAMA Jafari S, Menagadevi T, Maragatha Meenakshı P, Rajesh N. Intuitionistic Smooth Fuzzy $\theta$-Closure Operator. Konuralp J. Math. 2022;10:92–102.
MLA Jafari, S. et al. “Intuitionistic Smooth Fuzzy $\theta$-Closure Operator”. Konuralp Journal of Mathematics, vol. 10, no. 1, 2022, pp. 92-102.
Vancouver Jafari S, Menagadevi T, Maragatha Meenakshı P, Rajesh N. Intuitionistic Smooth Fuzzy $\theta$-Closure Operator. Konuralp J. Math. 2022;10(1):92-102.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.