Research Article
BibTex RIS Cite

Some Geometric Properties of Bicomplex Sequence Spaces $l_{p}\left(\mathbb{BC}\right) $

Year 2022, Volume: 10 Issue: 1, 44 - 49, 15.04.2022

Abstract

In this article, we examine some geometric properties such as convexity, strictly convexity, uniformly convexity of bicomplex sequence spaces $ l_{p}\left( \mathbb{BC}\right) $ with Euclidean norm by proving some significant inequalities. We also furnish some nontrivial examples that support our findings for geometric properties not provided in some of these bicomplex sequence spaces.

References

  • [1] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann., Vol:40, No.3 (1892), 413-467.
  • [2] G. B. Price, An introduction to multicomplex spaces and functions, M. Dekker, 1991.
  • [3] M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa and A. Vajiac, Bicomplex numbers and their elementary functions, Cubo (Temuco), Vol:14, No.2 (2012), 61-80.
  • [4] D. Alpay, M. E. Luna-Elizarrar´as, M. Shapiro and D. C. Struppa, Basics of functional analysis with bicomplex scalars, and bicomplex Schur analysis, Springer Science & Business Media, 2014.
  • [5] M. E. Luna-Elizarrar´as, M. Shapiro, D. C. Struppa and A. Vajiac, Bicomplex holomorphic functions: The algebra, geometry and analysis of bicomplex numbers, Birkh¨auser, 2015.
  • [6] N. Sager and B. Sa˘gır, On completeness of some bicomplex sequence spaces, Palest. J. Math., Vol:9, No.2 (2020), 891-902.
  • [7] R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications (Vol. 6), New York:Springer, 2006.
  • [8] R. E. Castillo and H. Rafeiro, An introductory course in Lebesgue spaces, Switzerland: Springer, 2016.
  • [9] B. Sa˘gır and˙I Alas¸alvar, On geometric properties of weighted Lebesgue sequence spaces, Ikonion Journal of Mathematics, Vol:1, No.1 (2019), 18-25.
  • [10] N. G¨ung¨or, Some geometric properties of the non-Newtonian sequence spaces lp (N), Math. Slovaca, Vol:70, No.3 (2020), 689-696.
  • [11] G. K¨othe, Topological vector spaces I, Springer-Verlag Berlin, Heidelberg, 1983.
  • [12] H. Jarchow, Locally convex space, BG Teubner, Stuttgart, 1981.
  • [13] J. Yeh, Real Analysis: Theory of measure and integration second edition, World Scientific Publishing Company, 2006.
Year 2022, Volume: 10 Issue: 1, 44 - 49, 15.04.2022

Abstract

References

  • [1] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann., Vol:40, No.3 (1892), 413-467.
  • [2] G. B. Price, An introduction to multicomplex spaces and functions, M. Dekker, 1991.
  • [3] M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa and A. Vajiac, Bicomplex numbers and their elementary functions, Cubo (Temuco), Vol:14, No.2 (2012), 61-80.
  • [4] D. Alpay, M. E. Luna-Elizarrar´as, M. Shapiro and D. C. Struppa, Basics of functional analysis with bicomplex scalars, and bicomplex Schur analysis, Springer Science & Business Media, 2014.
  • [5] M. E. Luna-Elizarrar´as, M. Shapiro, D. C. Struppa and A. Vajiac, Bicomplex holomorphic functions: The algebra, geometry and analysis of bicomplex numbers, Birkh¨auser, 2015.
  • [6] N. Sager and B. Sa˘gır, On completeness of some bicomplex sequence spaces, Palest. J. Math., Vol:9, No.2 (2020), 891-902.
  • [7] R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications (Vol. 6), New York:Springer, 2006.
  • [8] R. E. Castillo and H. Rafeiro, An introductory course in Lebesgue spaces, Switzerland: Springer, 2016.
  • [9] B. Sa˘gır and˙I Alas¸alvar, On geometric properties of weighted Lebesgue sequence spaces, Ikonion Journal of Mathematics, Vol:1, No.1 (2019), 18-25.
  • [10] N. G¨ung¨or, Some geometric properties of the non-Newtonian sequence spaces lp (N), Math. Slovaca, Vol:70, No.3 (2020), 689-696.
  • [11] G. K¨othe, Topological vector spaces I, Springer-Verlag Berlin, Heidelberg, 1983.
  • [12] H. Jarchow, Locally convex space, BG Teubner, Stuttgart, 1981.
  • [13] J. Yeh, Real Analysis: Theory of measure and integration second edition, World Scientific Publishing Company, 2006.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nilay Değirmen 0000-0001-8192-8473

Birsen Sağır Duyar 0000-0001-5954-2005

Publication Date April 15, 2022
Submission Date August 13, 2021
Acceptance Date March 22, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Değirmen, N., & Sağır Duyar, B. (2022). Some Geometric Properties of Bicomplex Sequence Spaces $l_{p}\left(\mathbb{BC}\right) $. Konuralp Journal of Mathematics, 10(1), 44-49.
AMA Değirmen N, Sağır Duyar B. Some Geometric Properties of Bicomplex Sequence Spaces $l_{p}\left(\mathbb{BC}\right) $. Konuralp J. Math. April 2022;10(1):44-49.
Chicago Değirmen, Nilay, and Birsen Sağır Duyar. “Some Geometric Properties of Bicomplex Sequence Spaces $l_{p}\left(\mathbb{BC}\right) $”. Konuralp Journal of Mathematics 10, no. 1 (April 2022): 44-49.
EndNote Değirmen N, Sağır Duyar B (April 1, 2022) Some Geometric Properties of Bicomplex Sequence Spaces $l_{p}\left(\mathbb{BC}\right) $. Konuralp Journal of Mathematics 10 1 44–49.
IEEE N. Değirmen and B. Sağır Duyar, “Some Geometric Properties of Bicomplex Sequence Spaces $l_{p}\left(\mathbb{BC}\right) $”, Konuralp J. Math., vol. 10, no. 1, pp. 44–49, 2022.
ISNAD Değirmen, Nilay - Sağır Duyar, Birsen. “Some Geometric Properties of Bicomplex Sequence Spaces $l_{p}\left(\mathbb{BC}\right) $”. Konuralp Journal of Mathematics 10/1 (April 2022), 44-49.
JAMA Değirmen N, Sağır Duyar B. Some Geometric Properties of Bicomplex Sequence Spaces $l_{p}\left(\mathbb{BC}\right) $. Konuralp J. Math. 2022;10:44–49.
MLA Değirmen, Nilay and Birsen Sağır Duyar. “Some Geometric Properties of Bicomplex Sequence Spaces $l_{p}\left(\mathbb{BC}\right) $”. Konuralp Journal of Mathematics, vol. 10, no. 1, 2022, pp. 44-49.
Vancouver Değirmen N, Sağır Duyar B. Some Geometric Properties of Bicomplex Sequence Spaces $l_{p}\left(\mathbb{BC}\right) $. Konuralp J. Math. 2022;10(1):44-9.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.