[1] A.M. Akhmedov and S.R. El-Shabrawy, Spectra and fine spectra of lower triangular double-band matrices as operators on `p (1 p < ¥), Math.
Slovaca, 65 (5) (2015), 1137–1152.
[2] A.M. Akhmedov and F. Bas¸ar, On the fine spectrum of the Ces`aro operator in c0, Math. J. Ibaraki Univ., 36 (2004), 25-32.
[3] A.M. Akhmedov and F. Bas¸ar, On the fine spectra of the difference operator D over the sequence space lp, (1 p < ¥), Demonstratio Math., 39 (3)
(2006), 585-595.
[4] A.M. Akhmedov and F. Bas¸ar, The fine spectra of the Ces`aro operator C1 over the sequence space bvp, (1 p < ¥)), Math. J. Okayama Univ., 50
(2008), 135-147.
[5] A.M. Akhmedov and F. Bas¸ar, The fine spectra of the difference operator D over the sequence space bvp, (1 p < ¥)), Acta Math. Sin. Eng. Ser., 23
(10) (2007), 1757-1768.
[6] B. Altay and F. Bas¸ar, The fine spectrum and the matrix domain of the difference operator on the sequence space lp, (0 < p < 1), Commun. Math. Anal.,
2 (2) (2007), 1-11.
[7] RKh.Amirov, N. Durna and M. Yildirim, Subdivisions of the spectra for Ces`aro, Rhaly and Weighted mean operator on `p, c and `p, IJST, A3 (2011),
175-183.
[8] J. Appell, E. De Pascale and A. Vignoli, Nonlinear Spectral Theory. Berlin, New York, Walter de Gruyter, 2004.
[9] F. Bas¸ar, N. Durna and M. Yildirim, Subdivisions of the Spectra for Generalized Difference Operator Dv on the Sequence Space `1, ICMS., 1309 (2010),
254-260.
[10] F. Bas¸ar, N. Durna and M. Yildirim, Subdivisions of the spectra for the triple band matrix over certain sequence spaces, Gen. Math. Notes, 4 (1) (2011),
35-48.
[11] F. Bas¸ar, N. Durna and M. Yildirim, Subdivisions of the spectra for genarilized difference operator over certain sequence spaces, Thai J. Math., 9 (1)
(2011), 285-295.
[12] F. Bas¸ar, N. Durna and M. Yildirim, Subdivision of the spectra for difference operator over certain sequence space, Malays. J. Math. Sci., 6 (2012),
151-165.
[13] F. Bas¸ar, Summability Theory and its Applications, 2nd ed., CRC Press/Taylor & Francis Group, Boca Raton London New York, (in press) 2022.
[14] A. Brown, P.R. Halmos and A.L. Shields, Ces`aro operators. Acta Sci. Math., (Szeged). 26 (1965), 125–137.
[15] D.W. Boyd, The spectrum of the Ces`aro operator, Acta Sci. Math., (Szeged). 29 (1968), 31–34.
[16] G.P. Curbera and W.J. Ricker, Spectrum of the Ces`aro operator in `p, Arch. Math., 100 (2013), 267–271.
[17] N. Durna and M.cYildirim, Subdivision of the spectra for factorable matrices on c and `p, Math. Commun., 16 (2) (2011), 519-530.
[18] N. Durna and M. Yildirim, Subdivision of the Spectra for Factorable Matrices on c0, Gazi Univ. J. Sci., 24 (1) (2011), 45-49.
[19] N. Durna, M. Yildirim and C¸ . U¨ nal, On The Fine Spectrum of Generalized Lower Triangular Double Band Matrices Duv Over The Sequence Space c0,
Cumhuriyet Sci. J., 37 (3) (2016), 281-291.
[20] N. Durna, Subdivision of the spectra for the generalized upper triangular double-band matrices Duv over the sequence spaces c0 and c, ADYUSCI, 6 (1)
(2016), 31-43.
[21] N. Durna, Subdivision of the spectra for the generalized difference operator Da;b on the sequence space `p (1 < p < ¥), CBU J. Sci., 13 (2) (2017),
359–364.
[22] N. Durna, M. Yildirim and R. Kılıc¸, Partition of the spectra for the generalized difference operator B(r; s) on the sequence space cs, Cumhuriyet Sci. J.,
39 (1) (2018), 7–15.
[23] N. Durna, Subdivision of spectra for some lower triangular doule-band matrices as operators on c0, Ukr. Mat. Zh., 70 (7) (2018), 913–922.
[24] N. Durna and M.E. T¨urkay, The spectrum of q-Ces`aro matrices on c and Its various spectral decomposition for 0 < q < 1, Oper. Matrices, 15 (3) (2020),
795-813.
[25] E. D¨undar and F. Bas¸ar, On the fine spectrum of the upper triangle double band matrix D+ on the sequence space c0, Math. Commun., 18 (2) (2013),
337–348.
[26] S.R. El-Shabrawy, On the fine spectrum of the generalized difference operator Da;b over the sequence space `p, (1 < p < ¥), Appl. Math. Inf. Sci., 6
(1S) (2012), 111–118.
[27] S.R. El-Shabrawy, Spectra and fine spectra of certain lower triangular double-band matrices as operators on c0, J. Inequal. Appl., 2014 (1) (2014), 1-9.
[28] S.R. El-Shabrawy and S.H. Abu-Janah, Spectra of the generalized difference operator on the sequence spaces bv0 and h, Linear and Multilinear Algebra
66 (8) (2018), 1691–1708.
[29] S.R. El-Shabrawy, On q-Ces`aro Operators:Boundness, Compactness and Spectra, Numer.Funct.Anal.Optim., 41 (2) (2021), 1019-1037.
[30] J. Fathi and L. Rahmatollah, On the fine spectra of the generalized difference operator Duv over the sequence space `p, JMMRC, 1 (1) (2012), 1-12.
[31] H. Furkan, H. Bilgic¸ and F. Bas¸ar, On the fine spectrum of the operator B(r; s; t) over the sequence spaces `p and bvp, (1 < p < ¥), Comput. Math.
Appl., 60 (7) (2010), 2141–2152.
[32] S. Goldberg, Unbounded Linear Operators, McGraw Hill, New York, 1966.
[33] M. Gonzalez, The fine spectrum of Ces`aro operator in `p (1 < p < ¥), Arch. Math., 44 (1985), 355-358.
[34] V. Karakaya and M. Altun, Fine spectra of upper triangular double-band matrices, J. Comput. Appl. Math., 234 (2010), 1387–1394.
[35] V. Karakaya, M.D. Manafov and N. S¸ims¸ek, On the fine spectrum of the second order difference operator over the sequence spaces `p and bvp,
(1 < p < ¥). Math. Comput. Modelling, 55 (3-4) (2012), 426–431.
[36] V. Karakaya, M.D. Manafov and N. S¸ims¸ek, On fine spectra and subspectrum (approximate point, defect and compression) of operator with periodic
coefficients, J. Nonlinear Convex Anal., 18 (4) (2017), 709–717.
[37] E. Kreyszing, Introductory Functional Analysis with Applications, John Wiley & Sons Inc., New York Chichester Brisbane Toronto, 1978.
[38] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, 1970.
[39] M. Mursaleen, M. Yildirim and N. Durna, On the spectrum and Hilbert Schimidt properties of generalized Rhaly matrices. Commun. Fac. Sci. Univ.
Ank. Series A1, 68 (1) (2019),712–723.
[40] M. Mursaleen and F. Bas¸ar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor & Francis Group, Series: Mathematics and Its
Applications, Boca Raton London New York, 2020.
[41] J.I. Okutoyi, On the spectrum of Ces`aro operator, P.h.D. Thesis Birmingham University, 1986.
[42] J.I. Okutoyi, On the spectrum of C1 as an operator on bv0, J. Aust. Math. Soc., A 48 (1) (1990), 79–86.
[43] J.T. Okutoyi, On the spectrum of C1 as an operator on bv, Commun. Fac. Sci. Univ. Ank. Series A1, 41 (1992), 197–207.
[44] J.B. Reade, On the spectrum of the Ces`aro operator, Bull. Lond. Math. Soc., 17 (3) (1985), 263–267.
[45] B.E. Rhoades and M. Yildirim, Spectra and fine spectra for factorable matrices, Integral Equations Operator Theory, 53 (1) (2005), 127–144.
[46] B.E. Rhoades, The fine spectra for weighted mean operators in B(`p), Integral Equations Operator Theory, 12 (1) (1989), 82–98.
[47] B.C. Tripathy and R. Das, Fine spectrum of the upper triangular matrix U(r;0;0; s) over the sequence spaces c0 and c, Proyecciones, 37 (1) (2018),
85–101.
[48] T. Yaying, B. Hazarika and M. Mursaleen, On sequence space derived by the domain of q Ces`aro matrix in `p space and the associated operator ideal, J.
Math. Anal. Appl., 493 (1) (2021), 124453.
[49] M. Yes¸ilkayagil and F. Bas¸ar, On the ne spectrum of the operator defined by a lambda matrix over the sequence spaces of null and convergent sequences,
Abstr. Appl. Anal., 2013, Article ID 687393 (2013), 13 pages.
[50] M. Yes¸ilkayagil and F. Bas¸ar, A survey for the spectrum of triangles over sequence spaces, Numer. Funct. Anal. Optim., 40 (16) (2019), 1898-1917.
[51] M.E. Yildirim, The spectrum and fine spectrum of qCes`aro matrices with 0 < q < 1 on c0, Numer. Func.Anal. Optim., 41 (3) (2020), 361–377.
[52] M. Yildirim, The spectrum and fine spectrum of the compact Rhaly operator, Indian J. Pure Appl. Math., 27 (8) (1996), 779-784.
[53] M. Yildirim, The spectrum of Rhaly operator on `p, Indian J. Pure Appl. Math., 32 (2) (2001), 191-198.
[54] M. Yildirim and N. Durna, The spectrum and some subdivisions of the spectrum of discrete generalized Ces`aro operators on `p, (1 < p < ¥), J. Inequal.
Appl. 193 (2017), 1–13.
[55] M. Yildirim, M. Mursaleen and C¸ . Do˘gan, The Spectrum and fine spectrum of generalized Rhaly-Ces`aro matrices on c0 and c, Oper. Matrices, 12 (4)
(2018), 955–975.
[56] R.B. Wenger, The fine spectra of the H¨older summability operator, Indian J. Pure Appl. Math., 6 (6) (1975), 695–712.
[57] A. Wilansky, Summability Through Functional Analysis, North Holland, 1984.
Some Spectrum Estimates of the $ \alpha q$-Cesaro Matrices with $0<\alpha ,q<1$ on $c_{0}$
Year 2022,
Volume: 10 Issue: 2, 313 - 325, 31.10.2022
The main purpose of the this paper is to investigate the spectrum, the fine spectrum, the approximate point spectrum, the defect spectrum, and the compression spectrum of the genaralized $\alpha q$-Ces\`{a}ro matrix $% C_{q}^{\alpha }$ with $\alpha ,q\in \left( 0,1\right) $ on the sequence space $c_{0}$.
[1] A.M. Akhmedov and S.R. El-Shabrawy, Spectra and fine spectra of lower triangular double-band matrices as operators on `p (1 p < ¥), Math.
Slovaca, 65 (5) (2015), 1137–1152.
[2] A.M. Akhmedov and F. Bas¸ar, On the fine spectrum of the Ces`aro operator in c0, Math. J. Ibaraki Univ., 36 (2004), 25-32.
[3] A.M. Akhmedov and F. Bas¸ar, On the fine spectra of the difference operator D over the sequence space lp, (1 p < ¥), Demonstratio Math., 39 (3)
(2006), 585-595.
[4] A.M. Akhmedov and F. Bas¸ar, The fine spectra of the Ces`aro operator C1 over the sequence space bvp, (1 p < ¥)), Math. J. Okayama Univ., 50
(2008), 135-147.
[5] A.M. Akhmedov and F. Bas¸ar, The fine spectra of the difference operator D over the sequence space bvp, (1 p < ¥)), Acta Math. Sin. Eng. Ser., 23
(10) (2007), 1757-1768.
[6] B. Altay and F. Bas¸ar, The fine spectrum and the matrix domain of the difference operator on the sequence space lp, (0 < p < 1), Commun. Math. Anal.,
2 (2) (2007), 1-11.
[7] RKh.Amirov, N. Durna and M. Yildirim, Subdivisions of the spectra for Ces`aro, Rhaly and Weighted mean operator on `p, c and `p, IJST, A3 (2011),
175-183.
[8] J. Appell, E. De Pascale and A. Vignoli, Nonlinear Spectral Theory. Berlin, New York, Walter de Gruyter, 2004.
[9] F. Bas¸ar, N. Durna and M. Yildirim, Subdivisions of the Spectra for Generalized Difference Operator Dv on the Sequence Space `1, ICMS., 1309 (2010),
254-260.
[10] F. Bas¸ar, N. Durna and M. Yildirim, Subdivisions of the spectra for the triple band matrix over certain sequence spaces, Gen. Math. Notes, 4 (1) (2011),
35-48.
[11] F. Bas¸ar, N. Durna and M. Yildirim, Subdivisions of the spectra for genarilized difference operator over certain sequence spaces, Thai J. Math., 9 (1)
(2011), 285-295.
[12] F. Bas¸ar, N. Durna and M. Yildirim, Subdivision of the spectra for difference operator over certain sequence space, Malays. J. Math. Sci., 6 (2012),
151-165.
[13] F. Bas¸ar, Summability Theory and its Applications, 2nd ed., CRC Press/Taylor & Francis Group, Boca Raton London New York, (in press) 2022.
[14] A. Brown, P.R. Halmos and A.L. Shields, Ces`aro operators. Acta Sci. Math., (Szeged). 26 (1965), 125–137.
[15] D.W. Boyd, The spectrum of the Ces`aro operator, Acta Sci. Math., (Szeged). 29 (1968), 31–34.
[16] G.P. Curbera and W.J. Ricker, Spectrum of the Ces`aro operator in `p, Arch. Math., 100 (2013), 267–271.
[17] N. Durna and M.cYildirim, Subdivision of the spectra for factorable matrices on c and `p, Math. Commun., 16 (2) (2011), 519-530.
[18] N. Durna and M. Yildirim, Subdivision of the Spectra for Factorable Matrices on c0, Gazi Univ. J. Sci., 24 (1) (2011), 45-49.
[19] N. Durna, M. Yildirim and C¸ . U¨ nal, On The Fine Spectrum of Generalized Lower Triangular Double Band Matrices Duv Over The Sequence Space c0,
Cumhuriyet Sci. J., 37 (3) (2016), 281-291.
[20] N. Durna, Subdivision of the spectra for the generalized upper triangular double-band matrices Duv over the sequence spaces c0 and c, ADYUSCI, 6 (1)
(2016), 31-43.
[21] N. Durna, Subdivision of the spectra for the generalized difference operator Da;b on the sequence space `p (1 < p < ¥), CBU J. Sci., 13 (2) (2017),
359–364.
[22] N. Durna, M. Yildirim and R. Kılıc¸, Partition of the spectra for the generalized difference operator B(r; s) on the sequence space cs, Cumhuriyet Sci. J.,
39 (1) (2018), 7–15.
[23] N. Durna, Subdivision of spectra for some lower triangular doule-band matrices as operators on c0, Ukr. Mat. Zh., 70 (7) (2018), 913–922.
[24] N. Durna and M.E. T¨urkay, The spectrum of q-Ces`aro matrices on c and Its various spectral decomposition for 0 < q < 1, Oper. Matrices, 15 (3) (2020),
795-813.
[25] E. D¨undar and F. Bas¸ar, On the fine spectrum of the upper triangle double band matrix D+ on the sequence space c0, Math. Commun., 18 (2) (2013),
337–348.
[26] S.R. El-Shabrawy, On the fine spectrum of the generalized difference operator Da;b over the sequence space `p, (1 < p < ¥), Appl. Math. Inf. Sci., 6
(1S) (2012), 111–118.
[27] S.R. El-Shabrawy, Spectra and fine spectra of certain lower triangular double-band matrices as operators on c0, J. Inequal. Appl., 2014 (1) (2014), 1-9.
[28] S.R. El-Shabrawy and S.H. Abu-Janah, Spectra of the generalized difference operator on the sequence spaces bv0 and h, Linear and Multilinear Algebra
66 (8) (2018), 1691–1708.
[29] S.R. El-Shabrawy, On q-Ces`aro Operators:Boundness, Compactness and Spectra, Numer.Funct.Anal.Optim., 41 (2) (2021), 1019-1037.
[30] J. Fathi and L. Rahmatollah, On the fine spectra of the generalized difference operator Duv over the sequence space `p, JMMRC, 1 (1) (2012), 1-12.
[31] H. Furkan, H. Bilgic¸ and F. Bas¸ar, On the fine spectrum of the operator B(r; s; t) over the sequence spaces `p and bvp, (1 < p < ¥), Comput. Math.
Appl., 60 (7) (2010), 2141–2152.
[32] S. Goldberg, Unbounded Linear Operators, McGraw Hill, New York, 1966.
[33] M. Gonzalez, The fine spectrum of Ces`aro operator in `p (1 < p < ¥), Arch. Math., 44 (1985), 355-358.
[34] V. Karakaya and M. Altun, Fine spectra of upper triangular double-band matrices, J. Comput. Appl. Math., 234 (2010), 1387–1394.
[35] V. Karakaya, M.D. Manafov and N. S¸ims¸ek, On the fine spectrum of the second order difference operator over the sequence spaces `p and bvp,
(1 < p < ¥). Math. Comput. Modelling, 55 (3-4) (2012), 426–431.
[36] V. Karakaya, M.D. Manafov and N. S¸ims¸ek, On fine spectra and subspectrum (approximate point, defect and compression) of operator with periodic
coefficients, J. Nonlinear Convex Anal., 18 (4) (2017), 709–717.
[37] E. Kreyszing, Introductory Functional Analysis with Applications, John Wiley & Sons Inc., New York Chichester Brisbane Toronto, 1978.
[38] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, 1970.
[39] M. Mursaleen, M. Yildirim and N. Durna, On the spectrum and Hilbert Schimidt properties of generalized Rhaly matrices. Commun. Fac. Sci. Univ.
Ank. Series A1, 68 (1) (2019),712–723.
[40] M. Mursaleen and F. Bas¸ar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor & Francis Group, Series: Mathematics and Its
Applications, Boca Raton London New York, 2020.
[41] J.I. Okutoyi, On the spectrum of Ces`aro operator, P.h.D. Thesis Birmingham University, 1986.
[42] J.I. Okutoyi, On the spectrum of C1 as an operator on bv0, J. Aust. Math. Soc., A 48 (1) (1990), 79–86.
[43] J.T. Okutoyi, On the spectrum of C1 as an operator on bv, Commun. Fac. Sci. Univ. Ank. Series A1, 41 (1992), 197–207.
[44] J.B. Reade, On the spectrum of the Ces`aro operator, Bull. Lond. Math. Soc., 17 (3) (1985), 263–267.
[45] B.E. Rhoades and M. Yildirim, Spectra and fine spectra for factorable matrices, Integral Equations Operator Theory, 53 (1) (2005), 127–144.
[46] B.E. Rhoades, The fine spectra for weighted mean operators in B(`p), Integral Equations Operator Theory, 12 (1) (1989), 82–98.
[47] B.C. Tripathy and R. Das, Fine spectrum of the upper triangular matrix U(r;0;0; s) over the sequence spaces c0 and c, Proyecciones, 37 (1) (2018),
85–101.
[48] T. Yaying, B. Hazarika and M. Mursaleen, On sequence space derived by the domain of q Ces`aro matrix in `p space and the associated operator ideal, J.
Math. Anal. Appl., 493 (1) (2021), 124453.
[49] M. Yes¸ilkayagil and F. Bas¸ar, On the ne spectrum of the operator defined by a lambda matrix over the sequence spaces of null and convergent sequences,
Abstr. Appl. Anal., 2013, Article ID 687393 (2013), 13 pages.
[50] M. Yes¸ilkayagil and F. Bas¸ar, A survey for the spectrum of triangles over sequence spaces, Numer. Funct. Anal. Optim., 40 (16) (2019), 1898-1917.
[51] M.E. Yildirim, The spectrum and fine spectrum of qCes`aro matrices with 0 < q < 1 on c0, Numer. Func.Anal. Optim., 41 (3) (2020), 361–377.
[52] M. Yildirim, The spectrum and fine spectrum of the compact Rhaly operator, Indian J. Pure Appl. Math., 27 (8) (1996), 779-784.
[53] M. Yildirim, The spectrum of Rhaly operator on `p, Indian J. Pure Appl. Math., 32 (2) (2001), 191-198.
[54] M. Yildirim and N. Durna, The spectrum and some subdivisions of the spectrum of discrete generalized Ces`aro operators on `p, (1 < p < ¥), J. Inequal.
Appl. 193 (2017), 1–13.
[55] M. Yildirim, M. Mursaleen and C¸ . Do˘gan, The Spectrum and fine spectrum of generalized Rhaly-Ces`aro matrices on c0 and c, Oper. Matrices, 12 (4)
(2018), 955–975.
[56] R.B. Wenger, The fine spectra of the H¨older summability operator, Indian J. Pure Appl. Math., 6 (6) (1975), 695–712.
[57] A. Wilansky, Summability Through Functional Analysis, North Holland, 1984.
Türkay, M. E. (2022). Some Spectrum Estimates of the $ \alpha q$-Cesaro Matrices with $0<\alpha ,q<1$ on $c_{0}$. Konuralp Journal of Mathematics, 10(2), 313-325.
AMA
Türkay ME. Some Spectrum Estimates of the $ \alpha q$-Cesaro Matrices with $0<\alpha ,q<1$ on $c_{0}$. Konuralp J. Math. October 2022;10(2):313-325.
Chicago
Türkay, Merve Esra. “Some Spectrum Estimates of the $ \alpha Q$-Cesaro Matrices With $0<\alpha ,q<1$ on $c_{0}$”. Konuralp Journal of Mathematics 10, no. 2 (October 2022): 313-25.
EndNote
Türkay ME (October 1, 2022) Some Spectrum Estimates of the $ \alpha q$-Cesaro Matrices with $0<\alpha ,q<1$ on $c_{0}$. Konuralp Journal of Mathematics 10 2 313–325.
IEEE
M. E. Türkay, “Some Spectrum Estimates of the $ \alpha q$-Cesaro Matrices with $0<\alpha ,q<1$ on $c_{0}$”, Konuralp J. Math., vol. 10, no. 2, pp. 313–325, 2022.
ISNAD
Türkay, Merve Esra. “Some Spectrum Estimates of the $ \alpha Q$-Cesaro Matrices With $0<\alpha ,q<1$ on $c_{0}$”. Konuralp Journal of Mathematics 10/2 (October 2022), 313-325.
JAMA
Türkay ME. Some Spectrum Estimates of the $ \alpha q$-Cesaro Matrices with $0<\alpha ,q<1$ on $c_{0}$. Konuralp J. Math. 2022;10:313–325..
MLA
Türkay, Merve Esra. “Some Spectrum Estimates of the $ \alpha Q$-Cesaro Matrices With $0<\alpha ,q<1$ on $c_{0}$”. Konuralp Journal of Mathematics, vol. 10, no. 2, 2022, pp. 313-25.
Vancouver
Türkay ME. Some Spectrum Estimates of the $ \alpha q$-Cesaro Matrices with $0<\alpha ,q<1$ on $c_{0}$. Konuralp J. Math. 2022;10(2):313-25.