Research Article
BibTex RIS Cite
Year 2022, Volume: 10 Issue: 2, 282 - 292, 31.10.2022

Abstract

References

  • [1] P. Ribenboim. My Numbers, My Friends, Popular Lectures on Number Theory. Springer-Verlag, New York, Inc. 2000.
  • [2] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Volume 1, Second Edition, 2018.
  • [3] B. Demirtürk Bitim, N. Topal, Quaternions via Generalized Fibonacci and Lucas Number Components, Math. Reports 21(71), 2, (2019), 239-247.
  • [4] A. F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, The Fibonacci Quart., 3(3), (1965), 161-176.
  • [5] A. F. Horadam, Generating Functions for Powers of a Certain Generalized Sequence of Numbers, Duke Math J., 32(3), (1965), 437-446.
  • [6] M. Özdemir, Introduction to Hybrid Numbers, Adv. Appl. Cli¤ord Algebr. 28:11, (2018), no. 1, Art. 11, 32 pp.
  • [7] A. S. Liana, I. Wloch, The Fibonacci Hybrid Numbers. Utilitas Math. (2019), 110: 3-10.
  • [8] A. S. Liana, I. Wloch, Jacobsthal and Jacobsthal Lucas Hybrid Numbers, Annales Mathematiccae Silesianae, (2019), pp. 276-283.
  • [9] A. S. Liana, The Horadam Hybrid Numbers. Discuss. Math. Gen. Algebra Appl. 38(1), (2018), 91-98.
  • [10] T. D. ¸Sentürk, G.Bilgici, A. Dasdemir, Z. Ünal, Study on Horadam Hybrid Numbers, Turk. J. Math. (2020), 44: 1212 -1221.
  • [11] P. Catarino, G. Bilgici, A Note on Modifed k-Pell Hybrid Numbers, Konuralp Journal of Mathematics, 8 (2) (2020), 229-233.
  • [12] E. Polatlı, Hybrid Numbers with Fibonacci and Lucas Hybrid Number Coefficients, preprint, (2020).
  • [13] Y. Taşyurdu, Tribonacci and Tribonacci-Lucas Hybrid Numbers, International Journal of Contemporary Mathematical Sciences 14(4), (2019), 245 - 254.
  • [14] H. Prodinger, Some Information about the Binomial Transform, The Fibonacci Quart., 32 (5), (1994), 412-415.
  • [15] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison Wesley Publishing Co., 1998.
  • [16] K. W. Chen, Identities from the Binomial Transform, J. Number Theory, (2007), 124, 142-150.
  • [17] S. Falcon, A. Plaza, Binomial Transforms of the k􀀀Fibonacci Sequences, Int. J. Nonlinear Sci. Numer. Simul., 10, (2009), 1305-1316.
  • [18] E. Polatlı, On Certain Properties of Quadrapell Sequences, Karaelmas Science and Engineering Journal, 8(1), (2018), 305-308.
  • [19] F. Kaplan, A. Özkoç Öztürk. On the Binomial Transforms of the Horadam Quaternion Sequence, Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.7325.
  • [20] K. N. Boyadzhiev, Notes on the Binomial Transform: Theory and Table with Appendix on Stirling Transform, World Scienti…c, Singapore, 2018.
  • [21] N. Yılmaz, Binomial Transforms of the Balancing and Lucas-Balancing Polynomials, Contributions to the Discrete Mathematics, 15(3), (2020), 133-144.
  • [22] S.K. Ghosal, J.K. Mandal, Binomial Transform Based Fragile Watermarking for Image Authentication, J. Inf. Secur. Appl., 19 (4-5) (2014), pp. 272-281.

Binomial Transforms for Hybrid Numbers Defined Through Fibonacci and Lucas Number Components

Year 2022, Volume: 10 Issue: 2, 282 - 292, 31.10.2022

Abstract

The main purpose of covering this article has been to examine the hybrid numbers defined through Fibonacci and Lucas number components $\{\hat{H}% _{U,n}\}$ and $\{\hat{H}_{V,n}\}$~and their binomial transforms $\{b\hat{H}% _{U,n}\}$ and $\{b\hat{H}_{V,n}\},$ respectively. Firstly, general sum formulas, binomial identities, which are not in the literature yet, about hybrid numbers $\{\hat{H}_{U,n}\}$ and $\{\hat{H}_{V,n}\}$ are discussed. Then, the recurrence relation is obtained for $\{b\hat{H}_{U,n}\}$ and $\{b% \hat{H}_{V,n}\}$ and some results have been found for the new sequence.

References

  • [1] P. Ribenboim. My Numbers, My Friends, Popular Lectures on Number Theory. Springer-Verlag, New York, Inc. 2000.
  • [2] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Volume 1, Second Edition, 2018.
  • [3] B. Demirtürk Bitim, N. Topal, Quaternions via Generalized Fibonacci and Lucas Number Components, Math. Reports 21(71), 2, (2019), 239-247.
  • [4] A. F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, The Fibonacci Quart., 3(3), (1965), 161-176.
  • [5] A. F. Horadam, Generating Functions for Powers of a Certain Generalized Sequence of Numbers, Duke Math J., 32(3), (1965), 437-446.
  • [6] M. Özdemir, Introduction to Hybrid Numbers, Adv. Appl. Cli¤ord Algebr. 28:11, (2018), no. 1, Art. 11, 32 pp.
  • [7] A. S. Liana, I. Wloch, The Fibonacci Hybrid Numbers. Utilitas Math. (2019), 110: 3-10.
  • [8] A. S. Liana, I. Wloch, Jacobsthal and Jacobsthal Lucas Hybrid Numbers, Annales Mathematiccae Silesianae, (2019), pp. 276-283.
  • [9] A. S. Liana, The Horadam Hybrid Numbers. Discuss. Math. Gen. Algebra Appl. 38(1), (2018), 91-98.
  • [10] T. D. ¸Sentürk, G.Bilgici, A. Dasdemir, Z. Ünal, Study on Horadam Hybrid Numbers, Turk. J. Math. (2020), 44: 1212 -1221.
  • [11] P. Catarino, G. Bilgici, A Note on Modifed k-Pell Hybrid Numbers, Konuralp Journal of Mathematics, 8 (2) (2020), 229-233.
  • [12] E. Polatlı, Hybrid Numbers with Fibonacci and Lucas Hybrid Number Coefficients, preprint, (2020).
  • [13] Y. Taşyurdu, Tribonacci and Tribonacci-Lucas Hybrid Numbers, International Journal of Contemporary Mathematical Sciences 14(4), (2019), 245 - 254.
  • [14] H. Prodinger, Some Information about the Binomial Transform, The Fibonacci Quart., 32 (5), (1994), 412-415.
  • [15] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison Wesley Publishing Co., 1998.
  • [16] K. W. Chen, Identities from the Binomial Transform, J. Number Theory, (2007), 124, 142-150.
  • [17] S. Falcon, A. Plaza, Binomial Transforms of the k􀀀Fibonacci Sequences, Int. J. Nonlinear Sci. Numer. Simul., 10, (2009), 1305-1316.
  • [18] E. Polatlı, On Certain Properties of Quadrapell Sequences, Karaelmas Science and Engineering Journal, 8(1), (2018), 305-308.
  • [19] F. Kaplan, A. Özkoç Öztürk. On the Binomial Transforms of the Horadam Quaternion Sequence, Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.7325.
  • [20] K. N. Boyadzhiev, Notes on the Binomial Transform: Theory and Table with Appendix on Stirling Transform, World Scienti…c, Singapore, 2018.
  • [21] N. Yılmaz, Binomial Transforms of the Balancing and Lucas-Balancing Polynomials, Contributions to the Discrete Mathematics, 15(3), (2020), 133-144.
  • [22] S.K. Ghosal, J.K. Mandal, Binomial Transform Based Fragile Watermarking for Image Authentication, J. Inf. Secur. Appl., 19 (4-5) (2014), pp. 272-281.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Arzu Özkoç

Publication Date October 31, 2022
Submission Date October 19, 2022
Acceptance Date October 27, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Özkoç, A. (2022). Binomial Transforms for Hybrid Numbers Defined Through Fibonacci and Lucas Number Components. Konuralp Journal of Mathematics, 10(2), 282-292.
AMA Özkoç A. Binomial Transforms for Hybrid Numbers Defined Through Fibonacci and Lucas Number Components. Konuralp J. Math. October 2022;10(2):282-292.
Chicago Özkoç, Arzu. “Binomial Transforms for Hybrid Numbers Defined Through Fibonacci and Lucas Number Components”. Konuralp Journal of Mathematics 10, no. 2 (October 2022): 282-92.
EndNote Özkoç A (October 1, 2022) Binomial Transforms for Hybrid Numbers Defined Through Fibonacci and Lucas Number Components. Konuralp Journal of Mathematics 10 2 282–292.
IEEE A. Özkoç, “Binomial Transforms for Hybrid Numbers Defined Through Fibonacci and Lucas Number Components”, Konuralp J. Math., vol. 10, no. 2, pp. 282–292, 2022.
ISNAD Özkoç, Arzu. “Binomial Transforms for Hybrid Numbers Defined Through Fibonacci and Lucas Number Components”. Konuralp Journal of Mathematics 10/2 (October 2022), 282-292.
JAMA Özkoç A. Binomial Transforms for Hybrid Numbers Defined Through Fibonacci and Lucas Number Components. Konuralp J. Math. 2022;10:282–292.
MLA Özkoç, Arzu. “Binomial Transforms for Hybrid Numbers Defined Through Fibonacci and Lucas Number Components”. Konuralp Journal of Mathematics, vol. 10, no. 2, 2022, pp. 282-9.
Vancouver Özkoç A. Binomial Transforms for Hybrid Numbers Defined Through Fibonacci and Lucas Number Components. Konuralp J. Math. 2022;10(2):282-9.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.