Research Article
BibTex RIS Cite

A Solution Form of a Rational Difference Equation

Year 2023, Volume: 11 Issue: 1, 20 - 23, 30.04.2023

Abstract

This paper shows the solution form of the rational difference equation \begin{equation*} x_{n+1}=\frac{ax_{n-(2k+3)}}{-a\mp x_{n-(k+1)}x_{n-(2k+3)}}\text{ }% ,~n=0,1,... \end{equation*} where $k$ is a positive integer $a$ and initial conditions are non-zero real numbers with $x_{n-(k+1)}x_{n-(2k+3)}\neq \mp a$ for all $n\in N_{0}$.

References

  • [1] Gelis¸ken, A., On a system of rational difference equation, Journal of Computational Analysis and Applications, 23(4), 593-606, 2017.
  • [2] Gelis¸ken, A., Karatas¸, R., On a solvable difference equation with sequence coefficients, Advances and Applications in Discrete Mathematics, 30, 27-33, 2022.
  • [3] C¸ inar, G., Gelis¸ken, A., ”Ozkan, O., Well-defined solutions of the difference equation $x_{n}=\frac{x_{n-3k}x_{n-4k}x_{n-5k}}{x_{n-k}x_{n-2k}\left( \pm 1\pm x_{n-3k}x_{n-4k}x_{n-5k}\right) }$}, Asian-European Journal of Mathematics, 12(6), 2019.
  • [4] Simsek, D., Abdullayev, F., On the recursive sequence $x_{n+1}=\frac{x_{n-(4k+3)}}{1+\prod\nolimits_{t=0}^{2}x_{n-(k+1)t-k}}$ , Journal of Mathematical Sciences, 6(222), 762-771, 2017.
  • [5] Simsek, D., Abdullayev, F., On the recursive sequence $x_{n+1}=\frac{x_{n-(k+1)}}{1+x_{n}x_{n-1}...x_{n-k}}$ , Journal of Mathematical Sciences, 234(1), 73-81, 2018.
  • [6] Elsayed, E. M., Alzahrani, F., Alayachi, H. S., Formulas and properties of some class of nonlinear difference equation, Journal of Computational Analysis and Applications, 24(8), 1517-1531, 2018.
  • [7] Almatrafi, M. B., Elsayed, E. M., Alzahrani, F., Investigating some properties of a fourth order difference equation, Journal of Computational Analysis and Applications, 28(2), 243-253, 2020.
  • [8] Ari, M., Gelis¸ken, A., Periodic and asymptotic behavior of a difference equation, Asian-European Journal of Mathematics, 12(6), 2040004, 10pp, 2019.
  • [9] ”Ozkan, O., Kurbanlı, A. S., On a system of difference equations, Discrete Dynamics in Nature and Society, 2013.
  • [10] Abo-Zeid, R., Behavior of solutions of higher order difference equation, Alabama Journal of Mathematics, 42, 1-10, 2018.
  • [11] Karatas¸, R., Gelis¸ken, A., A solution form of a higher order difference equation, Korunalp Journal of Mathematics, 9(2), 316-323, 2021.
  • [12] Karatas, R., Global behavior of a higher order difference equation, Computers and Mathematics with Applications, 60, 830-839, 2010.
  • [13] Karatas, R., On the solutions of the recursive sequence $x_{n+1}=\frac{\alpha x_{n-(2k+1)}}{-a+x_{n-k}x_{n-(2k+1)}},$ ; Fasciculi Mathematici, 45, 37-45, 2010.
  • [14] Ergin, S., Karatas, R., On the solutions of the recursive sequence $x_{n+1}=\frac{\alpha x_{n-k}}{a-\prod\nolimits_{i=0}^{k}x_{n-i}},$ ; Thai Journal of Mathematics, 14(2), 391-397, 2016.
  • [15] Saary, T.I., Modern Nonlinear Equations, McGraw Hill, Newyork, 1967.
  • [16] Kocic, V.L., Ladas, G., Global Behavior of Nonlinear Difference Equations of High Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
Year 2023, Volume: 11 Issue: 1, 20 - 23, 30.04.2023

Abstract

References

  • [1] Gelis¸ken, A., On a system of rational difference equation, Journal of Computational Analysis and Applications, 23(4), 593-606, 2017.
  • [2] Gelis¸ken, A., Karatas¸, R., On a solvable difference equation with sequence coefficients, Advances and Applications in Discrete Mathematics, 30, 27-33, 2022.
  • [3] C¸ inar, G., Gelis¸ken, A., ”Ozkan, O., Well-defined solutions of the difference equation $x_{n}=\frac{x_{n-3k}x_{n-4k}x_{n-5k}}{x_{n-k}x_{n-2k}\left( \pm 1\pm x_{n-3k}x_{n-4k}x_{n-5k}\right) }$}, Asian-European Journal of Mathematics, 12(6), 2019.
  • [4] Simsek, D., Abdullayev, F., On the recursive sequence $x_{n+1}=\frac{x_{n-(4k+3)}}{1+\prod\nolimits_{t=0}^{2}x_{n-(k+1)t-k}}$ , Journal of Mathematical Sciences, 6(222), 762-771, 2017.
  • [5] Simsek, D., Abdullayev, F., On the recursive sequence $x_{n+1}=\frac{x_{n-(k+1)}}{1+x_{n}x_{n-1}...x_{n-k}}$ , Journal of Mathematical Sciences, 234(1), 73-81, 2018.
  • [6] Elsayed, E. M., Alzahrani, F., Alayachi, H. S., Formulas and properties of some class of nonlinear difference equation, Journal of Computational Analysis and Applications, 24(8), 1517-1531, 2018.
  • [7] Almatrafi, M. B., Elsayed, E. M., Alzahrani, F., Investigating some properties of a fourth order difference equation, Journal of Computational Analysis and Applications, 28(2), 243-253, 2020.
  • [8] Ari, M., Gelis¸ken, A., Periodic and asymptotic behavior of a difference equation, Asian-European Journal of Mathematics, 12(6), 2040004, 10pp, 2019.
  • [9] ”Ozkan, O., Kurbanlı, A. S., On a system of difference equations, Discrete Dynamics in Nature and Society, 2013.
  • [10] Abo-Zeid, R., Behavior of solutions of higher order difference equation, Alabama Journal of Mathematics, 42, 1-10, 2018.
  • [11] Karatas¸, R., Gelis¸ken, A., A solution form of a higher order difference equation, Korunalp Journal of Mathematics, 9(2), 316-323, 2021.
  • [12] Karatas, R., Global behavior of a higher order difference equation, Computers and Mathematics with Applications, 60, 830-839, 2010.
  • [13] Karatas, R., On the solutions of the recursive sequence $x_{n+1}=\frac{\alpha x_{n-(2k+1)}}{-a+x_{n-k}x_{n-(2k+1)}},$ ; Fasciculi Mathematici, 45, 37-45, 2010.
  • [14] Ergin, S., Karatas, R., On the solutions of the recursive sequence $x_{n+1}=\frac{\alpha x_{n-k}}{a-\prod\nolimits_{i=0}^{k}x_{n-i}},$ ; Thai Journal of Mathematics, 14(2), 391-397, 2016.
  • [15] Saary, T.I., Modern Nonlinear Equations, McGraw Hill, Newyork, 1967.
  • [16] Kocic, V.L., Ladas, G., Global Behavior of Nonlinear Difference Equations of High Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ramazan Karataş

Publication Date April 30, 2023
Submission Date October 22, 2022
Acceptance Date April 28, 2023
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Karataş, R. (2023). A Solution Form of a Rational Difference Equation. Konuralp Journal of Mathematics, 11(1), 20-23.
AMA Karataş R. A Solution Form of a Rational Difference Equation. Konuralp J. Math. April 2023;11(1):20-23.
Chicago Karataş, Ramazan. “A Solution Form of a Rational Difference Equation”. Konuralp Journal of Mathematics 11, no. 1 (April 2023): 20-23.
EndNote Karataş R (April 1, 2023) A Solution Form of a Rational Difference Equation. Konuralp Journal of Mathematics 11 1 20–23.
IEEE R. Karataş, “A Solution Form of a Rational Difference Equation”, Konuralp J. Math., vol. 11, no. 1, pp. 20–23, 2023.
ISNAD Karataş, Ramazan. “A Solution Form of a Rational Difference Equation”. Konuralp Journal of Mathematics 11/1 (April 2023), 20-23.
JAMA Karataş R. A Solution Form of a Rational Difference Equation. Konuralp J. Math. 2023;11:20–23.
MLA Karataş, Ramazan. “A Solution Form of a Rational Difference Equation”. Konuralp Journal of Mathematics, vol. 11, no. 1, 2023, pp. 20-23.
Vancouver Karataş R. A Solution Form of a Rational Difference Equation. Konuralp J. Math. 2023;11(1):20-3.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.