Research Article
BibTex RIS Cite
Year 2023, Volume: 11 Issue: 2, 105 - 108, 31.10.2023

Abstract

References

  • [1] A. Azizi, Radical formula and prime submodules, Journal of Algebra Vol:307, (2007), 454-460.
  • [2] A. Azizi, Radical formula and weakly prime submodules, Glasgow Mathematical Journal of Trust Vol:51, (2009), 405-412.
  • [3] M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar. Vol:113, No:3, (2006), 243-254.
  • [4] M. Behboodi and H. Koohy, Weakly prime modules, Vietnam Journal of Mathematics Vol:32, No:2 (2004), 185-195.
  • [5] R.L. McCasland and M.E. Moore, On radical of submodules, Communications in Algebra Vol:19, No:5, (1991), 1327-1341.
  • [6] E. Yılmaz and S. K. Cansu, Baer’s lower nilradical and classical prime submodules, Bulletin of the Iranian Mathematical Society Vol:40, No:5, (2014), 1263-1274.
  • [7] C-P. Lu, Prime submodules of modules, Comment. Math. University Sancti Pauli Vol:33, No:1, (1984), 61-69.

Weakly Prime Radical of Submodules

Year 2023, Volume: 11 Issue: 2, 105 - 108, 31.10.2023

Abstract

In this paper, some properties of weakly prime radical are stated. The characterization of weakly prime radical for finitely generated modules is given. Also, the relationship between the weakly prime radical of a submodule and the ideals of the ring $T$ is considered.

References

  • [1] A. Azizi, Radical formula and prime submodules, Journal of Algebra Vol:307, (2007), 454-460.
  • [2] A. Azizi, Radical formula and weakly prime submodules, Glasgow Mathematical Journal of Trust Vol:51, (2009), 405-412.
  • [3] M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar. Vol:113, No:3, (2006), 243-254.
  • [4] M. Behboodi and H. Koohy, Weakly prime modules, Vietnam Journal of Mathematics Vol:32, No:2 (2004), 185-195.
  • [5] R.L. McCasland and M.E. Moore, On radical of submodules, Communications in Algebra Vol:19, No:5, (1991), 1327-1341.
  • [6] E. Yılmaz and S. K. Cansu, Baer’s lower nilradical and classical prime submodules, Bulletin of the Iranian Mathematical Society Vol:40, No:5, (2014), 1263-1274.
  • [7] C-P. Lu, Prime submodules of modules, Comment. Math. University Sancti Pauli Vol:33, No:1, (1984), 61-69.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Sibel Cansu 0000-0001-6014-9366

Publication Date October 31, 2023
Submission Date May 8, 2023
Acceptance Date October 17, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

APA Cansu, S. (2023). Weakly Prime Radical of Submodules. Konuralp Journal of Mathematics, 11(2), 105-108.
AMA Cansu S. Weakly Prime Radical of Submodules. Konuralp J. Math. October 2023;11(2):105-108.
Chicago Cansu, Sibel. “Weakly Prime Radical of Submodules”. Konuralp Journal of Mathematics 11, no. 2 (October 2023): 105-8.
EndNote Cansu S (October 1, 2023) Weakly Prime Radical of Submodules. Konuralp Journal of Mathematics 11 2 105–108.
IEEE S. Cansu, “Weakly Prime Radical of Submodules”, Konuralp J. Math., vol. 11, no. 2, pp. 105–108, 2023.
ISNAD Cansu, Sibel. “Weakly Prime Radical of Submodules”. Konuralp Journal of Mathematics 11/2 (October 2023), 105-108.
JAMA Cansu S. Weakly Prime Radical of Submodules. Konuralp J. Math. 2023;11:105–108.
MLA Cansu, Sibel. “Weakly Prime Radical of Submodules”. Konuralp Journal of Mathematics, vol. 11, no. 2, 2023, pp. 105-8.
Vancouver Cansu S. Weakly Prime Radical of Submodules. Konuralp J. Math. 2023;11(2):105-8.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.