Research Article
BibTex RIS Cite

Reeb Flow Invariant Unit Tangent Sphere Bundles with the Kaluza-Klein Metric

Year 2024, Volume: 12 Issue: 2, 120 - 123, 28.10.2024

Abstract

Let $(M,g)$ be an $n-$dimensional Riemannian manifold and $T_{1}M$ its tangent sphere bundle with the contact metric structure $(\tilde{G},\eta ,\phi ,\xi )$, where $\tilde{G}$ is the Kaluza-Klein metric. Let $h=\frac{1}{% 2}\mathfrak{L}_{\xi }\phi $ be the structural operator and $l=\bar{R}(\cdot ,\xi )\xi $ be the characteristic Jacobi operator on $T_{1}M.\ $In this paper, we find some conditions for the Reeb flow invariancy of the $(0,2)-$ type tensors $L$ and $H$ defined by $L(\tilde{X},\tilde{Y})=g(l\tilde{X},\tilde{Y})$ and $H(\tilde{X},\tilde{Y})=g(h\tilde{X},\tilde{Y})$ for all vector fields $% \tilde{X}$ and $\tilde{Y}$ on $T_{1}M.$

References

  • [1] M.T.K. Abbassi, N. Amri and G. Calvaruso, Kaluza-Klein type Ricci solitons on unit tangent sphere bundles, Differ. Geom. Appl., Vol:59, (2018), 184-203.
  • [2] M. T. K. Abbassi and G. Calvaruso, g-Natural Contact Metrics on Unit Tangent Sphere Bundles, Monatshefte f¨ur Mathematik, Vol:151, (2007), 89-109.
  • [3] M.T.K. Abbassi and O. Kowalski, On g-natural metrics with constant scalar curvature on unit tangent sphere bundles, Topics in Almost Hermitian Geometry and related fields, Vol:1, (2005), 1-29.
  • [4] M.T.K Abbassi and M. Sarih, On natural metrics on tangent bundles of Riemannian manifolds, Arch Math (Brno), Vol:41, (2005) 71-92.
  • [5] Blair, D.E., Riemannian geometry of contact and symplectic manifolds, Birkhauser, Boston, 2010.
  • [6] E. Boeckx, J. T. Cho and S. H. Chun, Flow invariant structures on unit tangent bundles, Publ. Math. Debrecen, Vol:70, (2007), 167-178.
  • [7] G. Calvaruso and D. Perrone, Geometry of Kaluza–Klein metrics on the sphere S3; Annali di Matematica Pura ed Applicata, Vol:192, (2013), 879-900.
  • [8] G. Calvaruso and D. Perrone, Metrics of Kaluza-Klein type on the anti-de Sitter space H3 1 ; Math. Nachr. Vol:287, (2014), 885-902.
  • [9] J.T. Cho and S.H. Chun, Reeb flow invariant unit tangent sphere bundles, Honam Mathematical Journal, Vol:36 (4), (2014), 805-812.
  • [10] Y. Tashiro, On contact structures of unit tangent sphere bundles, Tohoku Math. J., Vol:21 (1969), 117-143.
Year 2024, Volume: 12 Issue: 2, 120 - 123, 28.10.2024

Abstract

References

  • [1] M.T.K. Abbassi, N. Amri and G. Calvaruso, Kaluza-Klein type Ricci solitons on unit tangent sphere bundles, Differ. Geom. Appl., Vol:59, (2018), 184-203.
  • [2] M. T. K. Abbassi and G. Calvaruso, g-Natural Contact Metrics on Unit Tangent Sphere Bundles, Monatshefte f¨ur Mathematik, Vol:151, (2007), 89-109.
  • [3] M.T.K. Abbassi and O. Kowalski, On g-natural metrics with constant scalar curvature on unit tangent sphere bundles, Topics in Almost Hermitian Geometry and related fields, Vol:1, (2005), 1-29.
  • [4] M.T.K Abbassi and M. Sarih, On natural metrics on tangent bundles of Riemannian manifolds, Arch Math (Brno), Vol:41, (2005) 71-92.
  • [5] Blair, D.E., Riemannian geometry of contact and symplectic manifolds, Birkhauser, Boston, 2010.
  • [6] E. Boeckx, J. T. Cho and S. H. Chun, Flow invariant structures on unit tangent bundles, Publ. Math. Debrecen, Vol:70, (2007), 167-178.
  • [7] G. Calvaruso and D. Perrone, Geometry of Kaluza–Klein metrics on the sphere S3; Annali di Matematica Pura ed Applicata, Vol:192, (2013), 879-900.
  • [8] G. Calvaruso and D. Perrone, Metrics of Kaluza-Klein type on the anti-de Sitter space H3 1 ; Math. Nachr. Vol:287, (2014), 885-902.
  • [9] J.T. Cho and S.H. Chun, Reeb flow invariant unit tangent sphere bundles, Honam Mathematical Journal, Vol:36 (4), (2014), 805-812.
  • [10] Y. Tashiro, On contact structures of unit tangent sphere bundles, Tohoku Math. J., Vol:21 (1969), 117-143.
There are 10 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Murat Altunbaş 0000-0002-0371-9913

Publication Date October 28, 2024
Submission Date June 16, 2023
Acceptance Date October 4, 2024
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA Altunbaş, M. (2024). Reeb Flow Invariant Unit Tangent Sphere Bundles with the Kaluza-Klein Metric. Konuralp Journal of Mathematics, 12(2), 120-123.
AMA Altunbaş M. Reeb Flow Invariant Unit Tangent Sphere Bundles with the Kaluza-Klein Metric. Konuralp J. Math. October 2024;12(2):120-123.
Chicago Altunbaş, Murat. “Reeb Flow Invariant Unit Tangent Sphere Bundles With the Kaluza-Klein Metric”. Konuralp Journal of Mathematics 12, no. 2 (October 2024): 120-23.
EndNote Altunbaş M (October 1, 2024) Reeb Flow Invariant Unit Tangent Sphere Bundles with the Kaluza-Klein Metric. Konuralp Journal of Mathematics 12 2 120–123.
IEEE M. Altunbaş, “Reeb Flow Invariant Unit Tangent Sphere Bundles with the Kaluza-Klein Metric”, Konuralp J. Math., vol. 12, no. 2, pp. 120–123, 2024.
ISNAD Altunbaş, Murat. “Reeb Flow Invariant Unit Tangent Sphere Bundles With the Kaluza-Klein Metric”. Konuralp Journal of Mathematics 12/2 (October 2024), 120-123.
JAMA Altunbaş M. Reeb Flow Invariant Unit Tangent Sphere Bundles with the Kaluza-Klein Metric. Konuralp J. Math. 2024;12:120–123.
MLA Altunbaş, Murat. “Reeb Flow Invariant Unit Tangent Sphere Bundles With the Kaluza-Klein Metric”. Konuralp Journal of Mathematics, vol. 12, no. 2, 2024, pp. 120-3.
Vancouver Altunbaş M. Reeb Flow Invariant Unit Tangent Sphere Bundles with the Kaluza-Klein Metric. Konuralp J. Math. 2024;12(2):120-3.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.