Research Article
BibTex RIS Cite

$\eta$-Ricci-Yamabe Solitons on $K$-Contact Manifolds under $D$-Homothetic Deformation

Year 2025, Volume: 13 Issue: 1, 14 - 20, 30.04.2025

Abstract

This article presents a study on $D$-homothetically deformed $K$-contact manifolds. If a contact metric obtained by a $D$-homothetic deformation of $M$ is a $\eta$-Ricci-Yamabe soliton with point-wise collinear then $M$ reduces to $\eta$-Einstein have been established. Furthermore, we characterise an $\eta$-Ricci-Yamabe soliton, and two more solitons, on Ricci flat, concircularly flat, $M$-projectively flat $K$-contact manifold under $D$-homothetic deformation.

References

  • [1] Ayar, G., Yıldırım, M. h-Ricci solitons on nearly Kenmotsu manifolds. Asian-European Journal of Mathematics 12(06), (2019), 2040002.
  • [2] Ayar, G., and D, Demirhan., Ricci Solitons on Nearly Kenmotsu Manifolds with Semi-symmetric Metric Connection. Journal of Engineering Technology and Applied Sciences 4(3), (2019), 131-140.
  • [3] A. M. Blaga, h-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl, 20(1), (2015), 1–13.
  • [4] A. Carriazo Rubio, and V. Mart´ın Molina, Generalized (K;m)-space forms and D-homothetic deformations, Balkan Journal of Geometry and Its Applications, 16(1), (2011), 37-47.
  • [5] J. T. Cho, and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Mathematical Journal, Second Series, 61(2), (2009), 205-212.
  • [6] U. C. De, A. Sardar, and K. De, Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds, Turkish Journal of Mathematics, 46(3), (2022), 1078-1088.
  • [7] U. C. De, and S. Ghosh, D-homothetic deformation of normal almost contact metric manifolds, Ukrainian Mathematical Journal, 64(10), (2013), 1514-1530.
  • [8] A. Ghosh, Yamabe soliton and quasi Yamabe soliton on Kenmotsu manifold, Mathematica Slovaca, 70(1), (2020), 151-160.
  • [9] S. Güler, and M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turkish Journal of Mathematics, 43(5), (2019), 2631-2641.
  • [10] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71, (1988), 237-261.
  • [11] A. Mandal, A. Das, On M-projective curvature tensor of Sasakian manifolds admitting Zamkovoy connection, Adv. Math. Sci. J, 9(10), (2020), 8929-8940.
  • [12] Pankaj, S. K., and G. A. Chaubey., Yamabe and gradient Yamabe solitons on 3-dimensional hyperbolic Kenmotsu manifolds. Differ. Geom. Dyn. Syst 23, (2021), 183-196.
  • [13] G. P. Pokhariyal, and R.S. Mishra, Curvature tensors and their relativistic significance (II). Yokohama Mathematical Journal, 19(2), (1971), 97-103.
  • [14] M. Siddiqi, and M. A. Akyol, h-Ricci-Yamabe Soliton on Riemannian Submersions from Riemannian manifolds, Balkan J. Geom. Appl. 27(1), (2022), 24–38.
  • [15] S. Tanno, The topology of contact Riemannian manifolds, Illinois Journal of Mathematics, 12,(1968), 700-717.
  • [16] S. Tanno, Harmonic forms and Betti numbers of certain contact Riemannian manifolds, Journal of the Mathematical Society of Japan, 19, (1967), 308-316.
  • [17] K. Venu,H. G. Nagaraja, and D. K. Kumar, Ricci solitons and gradient Ricci solitons in a D-homothetically deformed K-contact manifold, Balkan Journal of Geometry and Its Applications, 26(2), (2021), 139-147.
  • [18] H. İ. Yoldas, On Kenmotsu manifolds admitting h-Ricci-Yamabe solitons, International Journal of Geometric Methods in Modern Physics, 18(12), (2021), 2150189.
  • [19] K. Yano, Concircular geometry I. Concircular transformations, Proceedings of the Imperial Academy, 16, (1940), 195-200.
  • [20] Yıldırım, M., Ayar, G. Ricci solitons and gradient Ricci solitons on nearly cosymplectic manifolds. Journal of Universal Mathematics 4(2), (2021), 201-208.
Year 2025, Volume: 13 Issue: 1, 14 - 20, 30.04.2025

Abstract

References

  • [1] Ayar, G., Yıldırım, M. h-Ricci solitons on nearly Kenmotsu manifolds. Asian-European Journal of Mathematics 12(06), (2019), 2040002.
  • [2] Ayar, G., and D, Demirhan., Ricci Solitons on Nearly Kenmotsu Manifolds with Semi-symmetric Metric Connection. Journal of Engineering Technology and Applied Sciences 4(3), (2019), 131-140.
  • [3] A. M. Blaga, h-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl, 20(1), (2015), 1–13.
  • [4] A. Carriazo Rubio, and V. Mart´ın Molina, Generalized (K;m)-space forms and D-homothetic deformations, Balkan Journal of Geometry and Its Applications, 16(1), (2011), 37-47.
  • [5] J. T. Cho, and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Mathematical Journal, Second Series, 61(2), (2009), 205-212.
  • [6] U. C. De, A. Sardar, and K. De, Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds, Turkish Journal of Mathematics, 46(3), (2022), 1078-1088.
  • [7] U. C. De, and S. Ghosh, D-homothetic deformation of normal almost contact metric manifolds, Ukrainian Mathematical Journal, 64(10), (2013), 1514-1530.
  • [8] A. Ghosh, Yamabe soliton and quasi Yamabe soliton on Kenmotsu manifold, Mathematica Slovaca, 70(1), (2020), 151-160.
  • [9] S. Güler, and M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turkish Journal of Mathematics, 43(5), (2019), 2631-2641.
  • [10] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71, (1988), 237-261.
  • [11] A. Mandal, A. Das, On M-projective curvature tensor of Sasakian manifolds admitting Zamkovoy connection, Adv. Math. Sci. J, 9(10), (2020), 8929-8940.
  • [12] Pankaj, S. K., and G. A. Chaubey., Yamabe and gradient Yamabe solitons on 3-dimensional hyperbolic Kenmotsu manifolds. Differ. Geom. Dyn. Syst 23, (2021), 183-196.
  • [13] G. P. Pokhariyal, and R.S. Mishra, Curvature tensors and their relativistic significance (II). Yokohama Mathematical Journal, 19(2), (1971), 97-103.
  • [14] M. Siddiqi, and M. A. Akyol, h-Ricci-Yamabe Soliton on Riemannian Submersions from Riemannian manifolds, Balkan J. Geom. Appl. 27(1), (2022), 24–38.
  • [15] S. Tanno, The topology of contact Riemannian manifolds, Illinois Journal of Mathematics, 12,(1968), 700-717.
  • [16] S. Tanno, Harmonic forms and Betti numbers of certain contact Riemannian manifolds, Journal of the Mathematical Society of Japan, 19, (1967), 308-316.
  • [17] K. Venu,H. G. Nagaraja, and D. K. Kumar, Ricci solitons and gradient Ricci solitons in a D-homothetically deformed K-contact manifold, Balkan Journal of Geometry and Its Applications, 26(2), (2021), 139-147.
  • [18] H. İ. Yoldas, On Kenmotsu manifolds admitting h-Ricci-Yamabe solitons, International Journal of Geometric Methods in Modern Physics, 18(12), (2021), 2150189.
  • [19] K. Yano, Concircular geometry I. Concircular transformations, Proceedings of the Imperial Academy, 16, (1940), 195-200.
  • [20] Yıldırım, M., Ayar, G. Ricci solitons and gradient Ricci solitons on nearly cosymplectic manifolds. Journal of Universal Mathematics 4(2), (2021), 201-208.
There are 20 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Pavithra R. C.

H.g. Nagaraja

Early Pub Date April 28, 2025
Publication Date April 30, 2025
Submission Date August 24, 2024
Acceptance Date January 22, 2025
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA R. C., P., & Nagaraja, H. (2025). $\eta$-Ricci-Yamabe Solitons on $K$-Contact Manifolds under $D$-Homothetic Deformation. Konuralp Journal of Mathematics, 13(1), 14-20.
AMA R. C. P, Nagaraja H. $\eta$-Ricci-Yamabe Solitons on $K$-Contact Manifolds under $D$-Homothetic Deformation. Konuralp J. Math. April 2025;13(1):14-20.
Chicago R. C., Pavithra, and H.g. Nagaraja. “$\eta$-Ricci-Yamabe Solitons on $K$-Contact Manifolds under $D$-Homothetic Deformation”. Konuralp Journal of Mathematics 13, no. 1 (April 2025): 14-20.
EndNote R. C. P, Nagaraja H (April 1, 2025) $\eta$-Ricci-Yamabe Solitons on $K$-Contact Manifolds under $D$-Homothetic Deformation. Konuralp Journal of Mathematics 13 1 14–20.
IEEE P. R. C. and H. Nagaraja, “$\eta$-Ricci-Yamabe Solitons on $K$-Contact Manifolds under $D$-Homothetic Deformation”, Konuralp J. Math., vol. 13, no. 1, pp. 14–20, 2025.
ISNAD R. C., Pavithra - Nagaraja, H.g. “$\eta$-Ricci-Yamabe Solitons on $K$-Contact Manifolds under $D$-Homothetic Deformation”. Konuralp Journal of Mathematics 13/1 (April 2025), 14-20.
JAMA R. C. P, Nagaraja H. $\eta$-Ricci-Yamabe Solitons on $K$-Contact Manifolds under $D$-Homothetic Deformation. Konuralp J. Math. 2025;13:14–20.
MLA R. C., Pavithra and H.g. Nagaraja. “$\eta$-Ricci-Yamabe Solitons on $K$-Contact Manifolds under $D$-Homothetic Deformation”. Konuralp Journal of Mathematics, vol. 13, no. 1, 2025, pp. 14-20.
Vancouver R. C. P, Nagaraja H. $\eta$-Ricci-Yamabe Solitons on $K$-Contact Manifolds under $D$-Homothetic Deformation. Konuralp J. Math. 2025;13(1):14-20.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.