$\eta$-Ricci-Yamabe Solitons on $K$-Contact Manifolds under $D$-Homothetic Deformation
Year 2025,
Volume: 13 Issue: 1, 14 - 20, 30.04.2025
Pavithra R. C.
,
H.g. Nagaraja
Abstract
This article presents a study on $D$-homothetically deformed $K$-contact manifolds. If a contact metric obtained by a $D$-homothetic deformation of $M$ is a $\eta$-Ricci-Yamabe soliton with point-wise collinear then $M$ reduces to $\eta$-Einstein have been established. Furthermore, we characterise an $\eta$-Ricci-Yamabe soliton, and two more solitons, on Ricci flat, concircularly flat, $M$-projectively flat $K$-contact manifold under $D$-homothetic deformation.
References
- [1] Ayar, G., Yıldırım, M. h-Ricci solitons on nearly Kenmotsu manifolds. Asian-European Journal of Mathematics 12(06), (2019), 2040002.
- [2] Ayar, G., and D, Demirhan., Ricci Solitons on Nearly Kenmotsu Manifolds with Semi-symmetric Metric Connection. Journal of Engineering Technology
and Applied Sciences 4(3), (2019), 131-140.
- [3] A. M. Blaga, h-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl, 20(1), (2015), 1–13.
- [4] A. Carriazo Rubio, and V. Mart´ın Molina, Generalized (K;m)-space forms and D-homothetic deformations, Balkan Journal of Geometry and Its
Applications, 16(1), (2011), 37-47.
- [5] J. T. Cho, and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Mathematical Journal, Second Series, 61(2), (2009),
205-212.
- [6] U. C. De, A. Sardar, and K. De, Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds, Turkish Journal of Mathematics, 46(3), (2022),
1078-1088.
- [7] U. C. De, and S. Ghosh, D-homothetic deformation of normal almost contact metric manifolds, Ukrainian Mathematical Journal, 64(10), (2013),
1514-1530.
- [8] A. Ghosh, Yamabe soliton and quasi Yamabe soliton on Kenmotsu manifold, Mathematica Slovaca, 70(1), (2020), 151-160.
- [9] S. Güler, and M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turkish Journal of
Mathematics, 43(5), (2019), 2631-2641.
- [10] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71, (1988), 237-261.
- [11] A. Mandal, A. Das, On M-projective curvature tensor of Sasakian manifolds admitting Zamkovoy connection, Adv. Math. Sci. J, 9(10), (2020),
8929-8940.
- [12] Pankaj, S. K., and G. A. Chaubey., Yamabe and gradient Yamabe solitons on 3-dimensional hyperbolic Kenmotsu manifolds. Differ. Geom. Dyn. Syst
23, (2021), 183-196.
- [13] G. P. Pokhariyal, and R.S. Mishra, Curvature tensors and their relativistic significance (II). Yokohama Mathematical Journal, 19(2), (1971), 97-103.
- [14] M. Siddiqi, and M. A. Akyol, h-Ricci-Yamabe Soliton on Riemannian Submersions from Riemannian manifolds, Balkan J. Geom. Appl. 27(1), (2022),
24–38.
- [15] S. Tanno, The topology of contact Riemannian manifolds, Illinois Journal of Mathematics, 12,(1968), 700-717.
- [16] S. Tanno, Harmonic forms and Betti numbers of certain contact Riemannian manifolds, Journal of the Mathematical Society of Japan, 19, (1967),
308-316.
- [17] K. Venu,H. G. Nagaraja, and D. K. Kumar, Ricci solitons and gradient Ricci solitons in a D-homothetically deformed K-contact manifold, Balkan
Journal of Geometry and Its Applications, 26(2), (2021), 139-147.
- [18] H. İ. Yoldas, On Kenmotsu manifolds admitting h-Ricci-Yamabe solitons, International Journal of Geometric Methods in Modern Physics, 18(12),
(2021), 2150189.
- [19] K. Yano, Concircular geometry I. Concircular transformations, Proceedings of the Imperial Academy, 16, (1940), 195-200.
- [20] Yıldırım, M., Ayar, G. Ricci solitons and gradient Ricci solitons on nearly cosymplectic manifolds. Journal of Universal Mathematics 4(2), (2021),
201-208.
Year 2025,
Volume: 13 Issue: 1, 14 - 20, 30.04.2025
Pavithra R. C.
,
H.g. Nagaraja
References
- [1] Ayar, G., Yıldırım, M. h-Ricci solitons on nearly Kenmotsu manifolds. Asian-European Journal of Mathematics 12(06), (2019), 2040002.
- [2] Ayar, G., and D, Demirhan., Ricci Solitons on Nearly Kenmotsu Manifolds with Semi-symmetric Metric Connection. Journal of Engineering Technology
and Applied Sciences 4(3), (2019), 131-140.
- [3] A. M. Blaga, h-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl, 20(1), (2015), 1–13.
- [4] A. Carriazo Rubio, and V. Mart´ın Molina, Generalized (K;m)-space forms and D-homothetic deformations, Balkan Journal of Geometry and Its
Applications, 16(1), (2011), 37-47.
- [5] J. T. Cho, and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Mathematical Journal, Second Series, 61(2), (2009),
205-212.
- [6] U. C. De, A. Sardar, and K. De, Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds, Turkish Journal of Mathematics, 46(3), (2022),
1078-1088.
- [7] U. C. De, and S. Ghosh, D-homothetic deformation of normal almost contact metric manifolds, Ukrainian Mathematical Journal, 64(10), (2013),
1514-1530.
- [8] A. Ghosh, Yamabe soliton and quasi Yamabe soliton on Kenmotsu manifold, Mathematica Slovaca, 70(1), (2020), 151-160.
- [9] S. Güler, and M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turkish Journal of
Mathematics, 43(5), (2019), 2631-2641.
- [10] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71, (1988), 237-261.
- [11] A. Mandal, A. Das, On M-projective curvature tensor of Sasakian manifolds admitting Zamkovoy connection, Adv. Math. Sci. J, 9(10), (2020),
8929-8940.
- [12] Pankaj, S. K., and G. A. Chaubey., Yamabe and gradient Yamabe solitons on 3-dimensional hyperbolic Kenmotsu manifolds. Differ. Geom. Dyn. Syst
23, (2021), 183-196.
- [13] G. P. Pokhariyal, and R.S. Mishra, Curvature tensors and their relativistic significance (II). Yokohama Mathematical Journal, 19(2), (1971), 97-103.
- [14] M. Siddiqi, and M. A. Akyol, h-Ricci-Yamabe Soliton on Riemannian Submersions from Riemannian manifolds, Balkan J. Geom. Appl. 27(1), (2022),
24–38.
- [15] S. Tanno, The topology of contact Riemannian manifolds, Illinois Journal of Mathematics, 12,(1968), 700-717.
- [16] S. Tanno, Harmonic forms and Betti numbers of certain contact Riemannian manifolds, Journal of the Mathematical Society of Japan, 19, (1967),
308-316.
- [17] K. Venu,H. G. Nagaraja, and D. K. Kumar, Ricci solitons and gradient Ricci solitons in a D-homothetically deformed K-contact manifold, Balkan
Journal of Geometry and Its Applications, 26(2), (2021), 139-147.
- [18] H. İ. Yoldas, On Kenmotsu manifolds admitting h-Ricci-Yamabe solitons, International Journal of Geometric Methods in Modern Physics, 18(12),
(2021), 2150189.
- [19] K. Yano, Concircular geometry I. Concircular transformations, Proceedings of the Imperial Academy, 16, (1940), 195-200.
- [20] Yıldırım, M., Ayar, G. Ricci solitons and gradient Ricci solitons on nearly cosymplectic manifolds. Journal of Universal Mathematics 4(2), (2021),
201-208.