Research Article
BibTex RIS Cite

Corrected Euler-Maclaurin Type Inequalities for Differentiable $s$-Convex Functions

Year 2025, Volume: 13 Issue: 1, 37 - 49, 30.04.2025

Abstract

Integral inequalities are generally applicable in many branches of mathematics such as real, complex, and numerical analysis, as well as in other disciplines outside mathematics. In this work, we first prove a new identity. Based on this equality, we establish some new corrected Euler-Maclaurin type inequalities for functions whose first derivatives are $% s$-convex. The case where the first derivative is bounded as well as Lipschitzians are also discussed. Some applications to quadrature formulas and inequalities involving means are provided.

References

  • [1] M. Alomari and M. Darus, On some inequalities of Simpson-type via quasi-convex functions and applications. Transylv. J. Math. Mech. 2 (2010), no. 1, 15-24.
  • [2] W. W. Breckner, Stetigkeitsaussagen f¨ur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen R¨aumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13–20.
  • [3] H. Budak, T. Tunc¸ and M. Z. Sarikaya, On Hermite-Hadamard type inequalities for F-convex function. Miskolc Math. Notes 20 (2019), no. 1, 169–191.
  • [4] T. Chiheb, N. Boumaza and B. Meftah, Some new Simpson-like type inequalities via preqausiinvexity. Transylv. J. Math. Mech.12 (2020), no.1, 1-10.
  • [5] T. Chiheb, B. Meftah and A. Dih, Dual Simpson type inequalities for functions whose absolute value of the first derivatives are preinvex. Konuralp J. Math. 10 (2022), no. 1, 73-78.
  • [6] M. R. Delavar, A. Kashuri and M. De La Sen, On Weighted Simpson’s 38 Rule. Symmetry, 13 (2021), no.10, 1933.
  • [7] ˙I. Demir and T. Tunc¸, New midpoint-type inequalities in the context of the proportional Caputo-hybrid operator. J. Inequal. Appl. 2024, Paper No. 2, 15 pp.
  • [8] M. Djenaoui and B. Meftah, Milne type inequalities for differentiable s-convex functions. Honam Math. J. 44 (2022), no. 3, 325–338.
  • [9] S. Djenaoui and B. Meftah, Fractional Maclaurin type inequalities for functions whose first derivatives are s-convex functions. Jordan J. Math. Stat. 16 (2023), no. 3, 483-506.
  • [10] S. S. Dragomir, R. P. Agarwal and P. Cerone, On Simpson’s inequality and applications. J. Inequal. Appl. 5 (2000), no. 6, 533-579.
  • [11] S. S. Dragomir, On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math. 5 (2001), no. 4, 775–788.
  • [12] S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions. Tamkang J. Math. 33 (2002), no. 1, 55–65.
  • [13] T. Du, J. Liao, L. Chen and M. U. Awan, Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (a;m)-preinvex functions. J. Inequal. Appl. 2016, Paper No. 306, 24 pp.
  • [14] T. Du, J.-G. Liao and Y.-J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s;m)-preinvex functions. J. Nonlinear Sci. Appl. 9 (2016), no. 5, 3112–3126.
  • [15] Z. Eken, S. Sezer, G. Tınaztepe and G. Adilov, s-convex functions in the fourth sense and some of their properties. Konuralp J. Math. 9 (2021), no. 2, 260–267.
  • [16] S. Erden, S. Iftikhar, P. Kumam and P. Thounthong, On error estimations of Simpson’s second type quadrature formula. Math. Methods Appl. Sci. 2020, 1-13.
  • [17] I. Franji´c and J. Peˇcari´c, Corrected Euler-Maclaurin’s formulae. Rend. Circ. Mat. Palermo (2) 54 (2005), no. 2, 259–272.
  • [18] A. Hassan and A. R. Khan, Fractional Ostrowski type inequalities via (s; r)-convex function. Jordan J. Math. Stat. 15 (2022), no. 4B, 1031–1047.
  • [19] J. Hua, B.-Y. Xi and F. Qi, Some new inequalities of Simpson type for strongly s-convex functions. Afr. Mat. 26 (2015), no. 5-6, 741-752.
  • [20] A. Kashuri, P. O. Mohammed, T. Abdeljawad, F. Hamasalh and Y. Chu, New Simpson type integral inequalities for s-convex functions and their applications. Math. Probl. Eng. 2020, Art. ID 8871988, 12 pp.
  • [21] A. Kashuri, B. Meftah, P. O. Mohammed, A. A. Lupas¸, B. Abdalla, Y. S. Hamed and T. Abdeljawad, Fractional weighted Ostrowski-type inequalities and their applications. Symmetry 2021, 13, 968.
  • [22] A. Lakhdari, W. Saleh, B. Meftah, A. Iqbal, Corrected dual Simpson type inequalities for differentiable generalized convex functions on fractal set. Fractal fract. 6 (2022), no.12, 710.
  • [23] N. Laribi and B. Meftah, 3=8-Simpson type inequalities for differentiable s-convex functions. Jordan J. Math. Stat. 16 (2023), no. 1, 79-98.
  • [24] Y. Li, T. Du and B. Yu, Some new integral inequalities of Hadamard-Simpson type for extended (s;m)-preinvex functions. Ital. J. Pure Appl. Math. No. 36 (2016), 583–600.
  • [25] B. Meftah, Ostrowski inequalities for functions whose first derivatives are logarithmically preinvex. Chin. J. Math. (N.Y.) 2016, Art. ID 5292603, 10 pp.
  • [26] B. Meftah, New Ostrowski’s inequalities. Rev. Colombiana Mat. 51 (2017), no. 1, 57-69.
  • [27] B. Meftah, M. Merad, N. Ouanas and A. Souahi, Some new Hermite-Hadamard type inequalities for functions whose nth derivatives are convex. Acta Comment. Univ. Tartu. Math. 23 (2019), no. 2, 163–178.
  • [28] B. Meftah, Fractional Hermite-Hadamard type integral inequalities for functions whose modulus of derivatives are co-ordinated log-preinvex. Punjab Univ. J. Math. (Lahore) 51 (2019), no. 2, 21–37.
  • [29] B. Meftah, M. Benssaad,W. Kaidouchi and S. Ghomrani, Conformable fractional Hermite-Hadamard type inequalities for product of two harmonic s-convex functions. Proc. Amer. Math. Soc. 149 (2021), no. 4, 1495–1506.
  • [30] B. Meftah, A. Lakhdari and D. C. Benchettah, Some new Hermite-Hadamard type integral inequalities for twice differentiable s-convex functions. Comput. Math. Model. 33 (2022), no. 3, 330–353.
  • [31] B. Meftah and N. Allel, Maclaurin’s inequalities for functions whose first derivatives are preinvex. J. Math Ana.l and Model. 3 (2022), no. 2, 52-64.
  • [32] B. Meftah and A. Lakhdari, Dual Simpson type inequalities for multiplicatively convex functions. Filomat 37 (2023), no. 22, 7673–7683.
  • [33] N. Mehreen and M. Anwar, Some integral inequalities of (s; p)-convex functions via fractional integrals. Jordan J. Math. Stat. 14 (2021), no. 3, 411–435.
  • [34] M. A. Noor, K. I. Noor and S. Iftikhar, Newton inequalities for p-harmonic convex functions. Honam Math. J. 40 (2018), no. 2, 239-250.
  • [35] M. E. O¨ zdemir, M. Gu¨rbu¨z and C¸ . Yildiz, Inequalities for mappings whose second derivatives are quasi-convex or h-convex functions. Miskolc Math. Notes 15 (2014), no. 2, 635-649.
  • [36] J. E. Peˇcari´c, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.
  • [37] C. Peng, C. Zhou and T. Du, Tingsong. Riemann-Liouville fractional Simpson’s inequalities through generalized (m;h1;h2)-preinvexity. Ital. J. Pure Appl. Math. No. 38 (2017), 345–367.
  • [38] M. Z. Sarikaya, E. Set and M. E. O¨ zdemir, On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex. J. Appl. Math. Stat. Inform. 9 (2013), no. 1, 37-45.
  • [39] M. Z. Sarikaya, B. C¸ elik, E. Set and H. Azaklı, Generalizations of different type inequalities for s-convex, quasi-convex and P-function. Konuralp J. Math. 10 (2022), no. 2, 341–354.
  • [40] E. Set, M. E. O¨ zdemir and M. Z. Sarıkaya, On new inequalities of Simpson’s type for quasi-convex functions with applications. Tamkang J. Math. 43 (2012), no. 3, 357-364.
  • [41] E. Set, M. U. Awan, M. A. Noor, K. I. Noor and N. Akhtar, On dominated classes of harmonic convex functions and associated integral inequalities. Jordan J. Math. Stat. 13 (2020), no. 1, 17–35.
  • [42] T. Tunc¸, H. Budak, F. Usta and M. Z. Sarıkaya, On new generalized fractional integral operators and related fractional inequalities. Konuralp J. Math. 8 (2020), no. 2, 268–278.
  • [43] T. Tunc¸ and ˙I. Demir, On a new version of Hermite-Hadamard-type inequality based on proportional Caputo-hybrid operator. Bound. Value Probl. 2024, Paper No. 44, 17 pp.
  • [44] S. Turhan, M. Kunt and ˙I. ˙Is¸can, (2020). On Hermite-Hadamard type inequalities with respect to the generalization of some types of s-convexity. Konuralp J. Math. 8 (2020), no. 1, 165-174.
Year 2025, Volume: 13 Issue: 1, 37 - 49, 30.04.2025

Abstract

References

  • [1] M. Alomari and M. Darus, On some inequalities of Simpson-type via quasi-convex functions and applications. Transylv. J. Math. Mech. 2 (2010), no. 1, 15-24.
  • [2] W. W. Breckner, Stetigkeitsaussagen f¨ur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen R¨aumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13–20.
  • [3] H. Budak, T. Tunc¸ and M. Z. Sarikaya, On Hermite-Hadamard type inequalities for F-convex function. Miskolc Math. Notes 20 (2019), no. 1, 169–191.
  • [4] T. Chiheb, N. Boumaza and B. Meftah, Some new Simpson-like type inequalities via preqausiinvexity. Transylv. J. Math. Mech.12 (2020), no.1, 1-10.
  • [5] T. Chiheb, B. Meftah and A. Dih, Dual Simpson type inequalities for functions whose absolute value of the first derivatives are preinvex. Konuralp J. Math. 10 (2022), no. 1, 73-78.
  • [6] M. R. Delavar, A. Kashuri and M. De La Sen, On Weighted Simpson’s 38 Rule. Symmetry, 13 (2021), no.10, 1933.
  • [7] ˙I. Demir and T. Tunc¸, New midpoint-type inequalities in the context of the proportional Caputo-hybrid operator. J. Inequal. Appl. 2024, Paper No. 2, 15 pp.
  • [8] M. Djenaoui and B. Meftah, Milne type inequalities for differentiable s-convex functions. Honam Math. J. 44 (2022), no. 3, 325–338.
  • [9] S. Djenaoui and B. Meftah, Fractional Maclaurin type inequalities for functions whose first derivatives are s-convex functions. Jordan J. Math. Stat. 16 (2023), no. 3, 483-506.
  • [10] S. S. Dragomir, R. P. Agarwal and P. Cerone, On Simpson’s inequality and applications. J. Inequal. Appl. 5 (2000), no. 6, 533-579.
  • [11] S. S. Dragomir, On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math. 5 (2001), no. 4, 775–788.
  • [12] S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions. Tamkang J. Math. 33 (2002), no. 1, 55–65.
  • [13] T. Du, J. Liao, L. Chen and M. U. Awan, Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (a;m)-preinvex functions. J. Inequal. Appl. 2016, Paper No. 306, 24 pp.
  • [14] T. Du, J.-G. Liao and Y.-J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s;m)-preinvex functions. J. Nonlinear Sci. Appl. 9 (2016), no. 5, 3112–3126.
  • [15] Z. Eken, S. Sezer, G. Tınaztepe and G. Adilov, s-convex functions in the fourth sense and some of their properties. Konuralp J. Math. 9 (2021), no. 2, 260–267.
  • [16] S. Erden, S. Iftikhar, P. Kumam and P. Thounthong, On error estimations of Simpson’s second type quadrature formula. Math. Methods Appl. Sci. 2020, 1-13.
  • [17] I. Franji´c and J. Peˇcari´c, Corrected Euler-Maclaurin’s formulae. Rend. Circ. Mat. Palermo (2) 54 (2005), no. 2, 259–272.
  • [18] A. Hassan and A. R. Khan, Fractional Ostrowski type inequalities via (s; r)-convex function. Jordan J. Math. Stat. 15 (2022), no. 4B, 1031–1047.
  • [19] J. Hua, B.-Y. Xi and F. Qi, Some new inequalities of Simpson type for strongly s-convex functions. Afr. Mat. 26 (2015), no. 5-6, 741-752.
  • [20] A. Kashuri, P. O. Mohammed, T. Abdeljawad, F. Hamasalh and Y. Chu, New Simpson type integral inequalities for s-convex functions and their applications. Math. Probl. Eng. 2020, Art. ID 8871988, 12 pp.
  • [21] A. Kashuri, B. Meftah, P. O. Mohammed, A. A. Lupas¸, B. Abdalla, Y. S. Hamed and T. Abdeljawad, Fractional weighted Ostrowski-type inequalities and their applications. Symmetry 2021, 13, 968.
  • [22] A. Lakhdari, W. Saleh, B. Meftah, A. Iqbal, Corrected dual Simpson type inequalities for differentiable generalized convex functions on fractal set. Fractal fract. 6 (2022), no.12, 710.
  • [23] N. Laribi and B. Meftah, 3=8-Simpson type inequalities for differentiable s-convex functions. Jordan J. Math. Stat. 16 (2023), no. 1, 79-98.
  • [24] Y. Li, T. Du and B. Yu, Some new integral inequalities of Hadamard-Simpson type for extended (s;m)-preinvex functions. Ital. J. Pure Appl. Math. No. 36 (2016), 583–600.
  • [25] B. Meftah, Ostrowski inequalities for functions whose first derivatives are logarithmically preinvex. Chin. J. Math. (N.Y.) 2016, Art. ID 5292603, 10 pp.
  • [26] B. Meftah, New Ostrowski’s inequalities. Rev. Colombiana Mat. 51 (2017), no. 1, 57-69.
  • [27] B. Meftah, M. Merad, N. Ouanas and A. Souahi, Some new Hermite-Hadamard type inequalities for functions whose nth derivatives are convex. Acta Comment. Univ. Tartu. Math. 23 (2019), no. 2, 163–178.
  • [28] B. Meftah, Fractional Hermite-Hadamard type integral inequalities for functions whose modulus of derivatives are co-ordinated log-preinvex. Punjab Univ. J. Math. (Lahore) 51 (2019), no. 2, 21–37.
  • [29] B. Meftah, M. Benssaad,W. Kaidouchi and S. Ghomrani, Conformable fractional Hermite-Hadamard type inequalities for product of two harmonic s-convex functions. Proc. Amer. Math. Soc. 149 (2021), no. 4, 1495–1506.
  • [30] B. Meftah, A. Lakhdari and D. C. Benchettah, Some new Hermite-Hadamard type integral inequalities for twice differentiable s-convex functions. Comput. Math. Model. 33 (2022), no. 3, 330–353.
  • [31] B. Meftah and N. Allel, Maclaurin’s inequalities for functions whose first derivatives are preinvex. J. Math Ana.l and Model. 3 (2022), no. 2, 52-64.
  • [32] B. Meftah and A. Lakhdari, Dual Simpson type inequalities for multiplicatively convex functions. Filomat 37 (2023), no. 22, 7673–7683.
  • [33] N. Mehreen and M. Anwar, Some integral inequalities of (s; p)-convex functions via fractional integrals. Jordan J. Math. Stat. 14 (2021), no. 3, 411–435.
  • [34] M. A. Noor, K. I. Noor and S. Iftikhar, Newton inequalities for p-harmonic convex functions. Honam Math. J. 40 (2018), no. 2, 239-250.
  • [35] M. E. O¨ zdemir, M. Gu¨rbu¨z and C¸ . Yildiz, Inequalities for mappings whose second derivatives are quasi-convex or h-convex functions. Miskolc Math. Notes 15 (2014), no. 2, 635-649.
  • [36] J. E. Peˇcari´c, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.
  • [37] C. Peng, C. Zhou and T. Du, Tingsong. Riemann-Liouville fractional Simpson’s inequalities through generalized (m;h1;h2)-preinvexity. Ital. J. Pure Appl. Math. No. 38 (2017), 345–367.
  • [38] M. Z. Sarikaya, E. Set and M. E. O¨ zdemir, On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex. J. Appl. Math. Stat. Inform. 9 (2013), no. 1, 37-45.
  • [39] M. Z. Sarikaya, B. C¸ elik, E. Set and H. Azaklı, Generalizations of different type inequalities for s-convex, quasi-convex and P-function. Konuralp J. Math. 10 (2022), no. 2, 341–354.
  • [40] E. Set, M. E. O¨ zdemir and M. Z. Sarıkaya, On new inequalities of Simpson’s type for quasi-convex functions with applications. Tamkang J. Math. 43 (2012), no. 3, 357-364.
  • [41] E. Set, M. U. Awan, M. A. Noor, K. I. Noor and N. Akhtar, On dominated classes of harmonic convex functions and associated integral inequalities. Jordan J. Math. Stat. 13 (2020), no. 1, 17–35.
  • [42] T. Tunc¸, H. Budak, F. Usta and M. Z. Sarıkaya, On new generalized fractional integral operators and related fractional inequalities. Konuralp J. Math. 8 (2020), no. 2, 268–278.
  • [43] T. Tunc¸ and ˙I. Demir, On a new version of Hermite-Hadamard-type inequality based on proportional Caputo-hybrid operator. Bound. Value Probl. 2024, Paper No. 44, 17 pp.
  • [44] S. Turhan, M. Kunt and ˙I. ˙Is¸can, (2020). On Hermite-Hadamard type inequalities with respect to the generalization of some types of s-convexity. Konuralp J. Math. 8 (2020), no. 1, 165-174.
There are 44 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Articles
Authors

Saliha Djenaoui

Badreddine Meftah 0000-0002-0156-7864

Early Pub Date April 28, 2025
Publication Date April 30, 2025
Submission Date September 6, 2024
Acceptance Date November 13, 2024
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Djenaoui, S., & Meftah, B. (2025). Corrected Euler-Maclaurin Type Inequalities for Differentiable $s$-Convex Functions. Konuralp Journal of Mathematics, 13(1), 37-49.
AMA Djenaoui S, Meftah B. Corrected Euler-Maclaurin Type Inequalities for Differentiable $s$-Convex Functions. Konuralp J. Math. April 2025;13(1):37-49.
Chicago Djenaoui, Saliha, and Badreddine Meftah. “Corrected Euler-Maclaurin Type Inequalities for Differentiable $s$-Convex Functions”. Konuralp Journal of Mathematics 13, no. 1 (April 2025): 37-49.
EndNote Djenaoui S, Meftah B (April 1, 2025) Corrected Euler-Maclaurin Type Inequalities for Differentiable $s$-Convex Functions. Konuralp Journal of Mathematics 13 1 37–49.
IEEE S. Djenaoui and B. Meftah, “Corrected Euler-Maclaurin Type Inequalities for Differentiable $s$-Convex Functions”, Konuralp J. Math., vol. 13, no. 1, pp. 37–49, 2025.
ISNAD Djenaoui, Saliha - Meftah, Badreddine. “Corrected Euler-Maclaurin Type Inequalities for Differentiable $s$-Convex Functions”. Konuralp Journal of Mathematics 13/1 (April 2025), 37-49.
JAMA Djenaoui S, Meftah B. Corrected Euler-Maclaurin Type Inequalities for Differentiable $s$-Convex Functions. Konuralp J. Math. 2025;13:37–49.
MLA Djenaoui, Saliha and Badreddine Meftah. “Corrected Euler-Maclaurin Type Inequalities for Differentiable $s$-Convex Functions”. Konuralp Journal of Mathematics, vol. 13, no. 1, 2025, pp. 37-49.
Vancouver Djenaoui S, Meftah B. Corrected Euler-Maclaurin Type Inequalities for Differentiable $s$-Convex Functions. Konuralp J. Math. 2025;13(1):37-49.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.