Research Article
BibTex RIS Cite

New Results on the Perfect Fluid Lorentzian Para-Sasakian Spacetimes

Year 2025, Volume: 13 Issue: 1, 1 - 13, 30.04.2025

Abstract

In this article, we investigate $\mathcal{LP}$-Sasakian spacetimes attached with perfect fluid whose metrics are (CERY)$_{4}$-soliton admitting $% \mathcal{Z}$-tensor. Also we discuss the application of such soliton to cosmology and general relativity. Besides this, we deduce a modified Poisson equation and modified Liouville equation from the (CERY)$_{4}$-soliton on $% \mathcal{LP}$-Sasakian spacetimes . In addition, we light up the harmonic aspect of such soliton on perfect fluid $\mathcal{LP}$-Sasakian spacetimes. Moreover, we conclude a necessary and sufficient condition for a $1$-form $% \eta ^{\sharp }$, which is the $g^{\star }$-dual of the vector field $\xi $ on such a spacetime to be a solution of the Schr\"{o}dinger-Ricci equation. In conclusion, we present an instance of a $4$-dimensional $\mathcal{LP}$% -Sasakian spacetime with the (CERY)$_{4}$-soliton equipped with $\mathcal{Z}$% -tensor.

Ethical Statement

There are no any Ethical statement

Supporting Institution

NA

Project Number

NA

Thanks

NA

References

  • [1] A. H. Alkhaldi, M. D. Siddiqi, M. A. Khan, and L. S. Alqahtani Imperfect Fluid Generalized Robertson Walker Spacetime Admitting Ricci-Yamabe Metric, Advances in Mathematical Physics Volume 2021, Article ID 2485804, 10 pages
  • [2] A. Barman, and Inan Unal, Geometry of Kenmotsu manifolds admitting Z -tensor, Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science (2022), 23-40.
  • [3] D. E. Blair, Riemannian geometry of contact and symmetric manifolds, Birhauser, Bston. 2010.
  • [4] A. M. Blaga, Harmonic aspects in an h-Ricci soliton, Int. Electron. J. Geom., 13 (2020), 41-49.
  • [5] G. Catino, L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal., 132 (2016), 66-94.
  • [6] M. C. Chaki, S. Roy, Spacetime with covariant constant energy momentum tensor, Int. J. Theor. Physics, 35 (1996), 1027-1032.
  • [7] B. Chow, S. C. Chu and D. Glickenstein et al., The Ricci flow:techniques and applications,in Part I: Geometric Aspects 135, AMS, 2007.
  • [8] U. C. De, A. A. Shaikh, and A. Sengupta, On LP-Sasakian manifolds with a coefficient a., Kyungpook Math. J., 42 (2002), 177-186.
  • [9] K. De, U. C. De, A. A. Syied, N. B. Turki and S. Alsaeed, Perfect fluid spacetimes and Gradient Solitons, J. Nonlin. Math. Phys., 29, 4 (2022), 843-858.
  • [10] A. E. Fischer, An introduction to conformal Ricci flow, Classical and Quantum Gravity., 21, (2004) 171-218.
  • [11] S. Güler, M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turk. J. Math., 43 (2019), 261-2641.
  • [12] R. S. Hamilton, Three Manifold with positive Ricci curvature, J. Differ. Geom. 17 (1982), 255-306.
  • [13] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237-261.
  • [14] Y. Li, A. Haseeb and M. Ali, LP-Kenmotsu Manifolds Admitting jeta-Ricci Solitons and Spacetime, Journal of Mathematics, (2022), Article ID 6605127, 10 pages.
  • [15] V. R. Kaigorodov, The curvature structure of spacetime, Prob. Geom. 14 (1983), 177-202.
  • [16] H. Kachar, Infinitesimal characterization of Friedmann Universes,Arch. Math. Basel., 38 (1982), 58-64.
  • [17] C. A. Mantica, U. C. De, Y. J. Suh, and L.G. Molinari,Perfect fluid spacetimes with harmonic generalized curvature tensor, Osaka J. Math. 56, (2019), 173-182.
  • [18] C. A. Mantica L. G. and Molinari, Weakly Z symmetric manifolds,Acta Math. Hungar., 135 (2012), 80-96.
  • [19] C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys., 9 1 (2012), 1250004.
  • [20] C. A. Mantica and Y. J. Suh,, Pseudo Z symmetric spacetimes, J. Math. Phys, 55 (2014), 042502.
  • [21] C. A. Mantica and Y. J. Suh, Recurrent Z forms on Riemannian and Kaehler manifolds, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1250059.
  • [22] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12 (1989), 151-156.
  • [23] B. O’Neill, Semi-Riemannian geometry with application to relativity, Pure and applied mathematics, Academic press, New York. 1983
  • [24] A. G. Popov, Exact formula for constructing solutions of the Liouville equation 42u=ev from solutions of the Laplace equation 42v=0. (Russian).
  • Dokl. Akad. Nauk. 1993, 333, 440-441. Translation in Russian Acad. Sci. Dokl. Math. 1994, 2, 55-71.
  • [25] A. Z. Petro, Einstein space, Pergamon Press, Oxford, (1967).
  • [26] A. K. Raychaudhary, S. Banerji and A. Banerjee , General relatively, Astrophysics and cosmology, Springer-Verlag. 1942.
  • [27] R. N. Singh, S. K. Pandey and G. Pandey, Second Order Parallel Tensors on LP-Sasakian Manifolds, Journal of International Academy of Physical Sciences, 13, (2009), 383-388.
  • [28] S. Sarkara, S. Dey and X. Chen, Certain Results of Conformal and -Conformal Ricci Soliton on Para-Cosymplectic and Para-Kenmotsu Manifolds, Filomat, 35, 15 (2021), 5001-5015.
  • [29] Y. J. Suh and S. K. Chaubey, Ricci solitons on general relativistic spacetime, Physica Scripta, 98 6,(2023).
  • [30] M. D. Siddiqi, F. Mofarreh, M. A. Akyol and A. H. Hakami, h-Ricci-Yamabe Solitons along Riemannian Submersions, Axioms, 12 (2023), 796.
  • [31] A. Y. Tasci and F. O. Zengin, On Z -symmetric manifold with conharmonic curvature tensor in special conditions, Kragujevac Journal of Mathematics, 49, 1 (2025), 65-80.
  • [32] K. Yano, M. Kon, Structures on manifolds, Series in Pure Math., World Scientific. 1984.
  • [33] K. Yano, Integral formulas in Riemannian geometry, Pure and Applied Mathematical, Marcel Dekkr, Inc., New York. 1970.
  • [34] S. K. Yadav, A note on space time in f (R)-gravity, Annals of communications in Mathematics, 6, 2 (2023), 99-108.
  • [35] S. K. Yadav, D. L.Suthar and S. K. Chaubey, Almost conformal Ricci soliton on generalized Robertson walker-space time, Research in Mathematics, 10, 1 (2023), 1-10.
  • [36] S. K. Yadav, P. K. Dwivedi and D. L. Suthar, On (LCS)n-manifolds satisfying certain conditions on the concircular curvature tensor,Thiland Journal of Mathematics, l, 9 (2011), 597-603.
  • [37] S. K. Yadav, A. Haseeb and A. Yildiz, Conformal h-Ricci-Yamabe solitons on submanifolds of an (LCS)n-manifold admitting a quarter-symmetric metric connection, Commun. Fac. Sci. Univ. Ank.Ser. A1 Math. Stat, 73, 3, (2024),1-19
  • [38] S. K. Yadav and D. L. Suthar, Kaehlerian Norden spacetime admitting conformal h-Ricci-Yamabe Metric, Int. J. of Geometric Methods in Modern Physics, https://doi.org/10.1142/S0219887824502347.
  • [39] S. K. Yadav and X. Chen, Z -tensor in mixed generalized quasi-Einstein GRW space-time, Sohag Journal of mathematics, 11, 1, (2024), 1-9.
  • [40] S. K. Yadav, Sumesh Senway, N. B. Turki and Rajendra Prasad, The Z -Tensor on Almost Co-K¨ahlerian Manifolds Admitting Riemann Soliton Structure, Advance in Mathematical Physics, Volume 2024, Article ID 7445240, 14 pages, https://doi.org/10.1155/2024/7445240
  • [41] P. Zhang, Y. Li,S. Roy, S. Dey and A. Bhattacharyya , Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci-Yamabe Soliton, Symmetry, 14, 3 (2022), 594.
Year 2025, Volume: 13 Issue: 1, 1 - 13, 30.04.2025

Abstract

Project Number

NA

References

  • [1] A. H. Alkhaldi, M. D. Siddiqi, M. A. Khan, and L. S. Alqahtani Imperfect Fluid Generalized Robertson Walker Spacetime Admitting Ricci-Yamabe Metric, Advances in Mathematical Physics Volume 2021, Article ID 2485804, 10 pages
  • [2] A. Barman, and Inan Unal, Geometry of Kenmotsu manifolds admitting Z -tensor, Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science (2022), 23-40.
  • [3] D. E. Blair, Riemannian geometry of contact and symmetric manifolds, Birhauser, Bston. 2010.
  • [4] A. M. Blaga, Harmonic aspects in an h-Ricci soliton, Int. Electron. J. Geom., 13 (2020), 41-49.
  • [5] G. Catino, L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal., 132 (2016), 66-94.
  • [6] M. C. Chaki, S. Roy, Spacetime with covariant constant energy momentum tensor, Int. J. Theor. Physics, 35 (1996), 1027-1032.
  • [7] B. Chow, S. C. Chu and D. Glickenstein et al., The Ricci flow:techniques and applications,in Part I: Geometric Aspects 135, AMS, 2007.
  • [8] U. C. De, A. A. Shaikh, and A. Sengupta, On LP-Sasakian manifolds with a coefficient a., Kyungpook Math. J., 42 (2002), 177-186.
  • [9] K. De, U. C. De, A. A. Syied, N. B. Turki and S. Alsaeed, Perfect fluid spacetimes and Gradient Solitons, J. Nonlin. Math. Phys., 29, 4 (2022), 843-858.
  • [10] A. E. Fischer, An introduction to conformal Ricci flow, Classical and Quantum Gravity., 21, (2004) 171-218.
  • [11] S. Güler, M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turk. J. Math., 43 (2019), 261-2641.
  • [12] R. S. Hamilton, Three Manifold with positive Ricci curvature, J. Differ. Geom. 17 (1982), 255-306.
  • [13] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237-261.
  • [14] Y. Li, A. Haseeb and M. Ali, LP-Kenmotsu Manifolds Admitting jeta-Ricci Solitons and Spacetime, Journal of Mathematics, (2022), Article ID 6605127, 10 pages.
  • [15] V. R. Kaigorodov, The curvature structure of spacetime, Prob. Geom. 14 (1983), 177-202.
  • [16] H. Kachar, Infinitesimal characterization of Friedmann Universes,Arch. Math. Basel., 38 (1982), 58-64.
  • [17] C. A. Mantica, U. C. De, Y. J. Suh, and L.G. Molinari,Perfect fluid spacetimes with harmonic generalized curvature tensor, Osaka J. Math. 56, (2019), 173-182.
  • [18] C. A. Mantica L. G. and Molinari, Weakly Z symmetric manifolds,Acta Math. Hungar., 135 (2012), 80-96.
  • [19] C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys., 9 1 (2012), 1250004.
  • [20] C. A. Mantica and Y. J. Suh,, Pseudo Z symmetric spacetimes, J. Math. Phys, 55 (2014), 042502.
  • [21] C. A. Mantica and Y. J. Suh, Recurrent Z forms on Riemannian and Kaehler manifolds, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1250059.
  • [22] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12 (1989), 151-156.
  • [23] B. O’Neill, Semi-Riemannian geometry with application to relativity, Pure and applied mathematics, Academic press, New York. 1983
  • [24] A. G. Popov, Exact formula for constructing solutions of the Liouville equation 42u=ev from solutions of the Laplace equation 42v=0. (Russian).
  • Dokl. Akad. Nauk. 1993, 333, 440-441. Translation in Russian Acad. Sci. Dokl. Math. 1994, 2, 55-71.
  • [25] A. Z. Petro, Einstein space, Pergamon Press, Oxford, (1967).
  • [26] A. K. Raychaudhary, S. Banerji and A. Banerjee , General relatively, Astrophysics and cosmology, Springer-Verlag. 1942.
  • [27] R. N. Singh, S. K. Pandey and G. Pandey, Second Order Parallel Tensors on LP-Sasakian Manifolds, Journal of International Academy of Physical Sciences, 13, (2009), 383-388.
  • [28] S. Sarkara, S. Dey and X. Chen, Certain Results of Conformal and -Conformal Ricci Soliton on Para-Cosymplectic and Para-Kenmotsu Manifolds, Filomat, 35, 15 (2021), 5001-5015.
  • [29] Y. J. Suh and S. K. Chaubey, Ricci solitons on general relativistic spacetime, Physica Scripta, 98 6,(2023).
  • [30] M. D. Siddiqi, F. Mofarreh, M. A. Akyol and A. H. Hakami, h-Ricci-Yamabe Solitons along Riemannian Submersions, Axioms, 12 (2023), 796.
  • [31] A. Y. Tasci and F. O. Zengin, On Z -symmetric manifold with conharmonic curvature tensor in special conditions, Kragujevac Journal of Mathematics, 49, 1 (2025), 65-80.
  • [32] K. Yano, M. Kon, Structures on manifolds, Series in Pure Math., World Scientific. 1984.
  • [33] K. Yano, Integral formulas in Riemannian geometry, Pure and Applied Mathematical, Marcel Dekkr, Inc., New York. 1970.
  • [34] S. K. Yadav, A note on space time in f (R)-gravity, Annals of communications in Mathematics, 6, 2 (2023), 99-108.
  • [35] S. K. Yadav, D. L.Suthar and S. K. Chaubey, Almost conformal Ricci soliton on generalized Robertson walker-space time, Research in Mathematics, 10, 1 (2023), 1-10.
  • [36] S. K. Yadav, P. K. Dwivedi and D. L. Suthar, On (LCS)n-manifolds satisfying certain conditions on the concircular curvature tensor,Thiland Journal of Mathematics, l, 9 (2011), 597-603.
  • [37] S. K. Yadav, A. Haseeb and A. Yildiz, Conformal h-Ricci-Yamabe solitons on submanifolds of an (LCS)n-manifold admitting a quarter-symmetric metric connection, Commun. Fac. Sci. Univ. Ank.Ser. A1 Math. Stat, 73, 3, (2024),1-19
  • [38] S. K. Yadav and D. L. Suthar, Kaehlerian Norden spacetime admitting conformal h-Ricci-Yamabe Metric, Int. J. of Geometric Methods in Modern Physics, https://doi.org/10.1142/S0219887824502347.
  • [39] S. K. Yadav and X. Chen, Z -tensor in mixed generalized quasi-Einstein GRW space-time, Sohag Journal of mathematics, 11, 1, (2024), 1-9.
  • [40] S. K. Yadav, Sumesh Senway, N. B. Turki and Rajendra Prasad, The Z -Tensor on Almost Co-K¨ahlerian Manifolds Admitting Riemann Soliton Structure, Advance in Mathematical Physics, Volume 2024, Article ID 7445240, 14 pages, https://doi.org/10.1155/2024/7445240
  • [41] P. Zhang, Y. Li,S. Roy, S. Dey and A. Bhattacharyya , Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci-Yamabe Soliton, Symmetry, 14, 3 (2022), 594.
There are 42 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions, Applied Mathematics (Other)
Journal Section Articles
Authors

Sunıl Yadav

Ahmet Yıldız 0000-0002-9799-1781

Project Number NA
Early Pub Date April 28, 2025
Publication Date April 30, 2025
Submission Date October 14, 2024
Acceptance Date February 14, 2025
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Yadav, S., & Yıldız, A. (2025). New Results on the Perfect Fluid Lorentzian Para-Sasakian Spacetimes. Konuralp Journal of Mathematics, 13(1), 1-13.
AMA Yadav S, Yıldız A. New Results on the Perfect Fluid Lorentzian Para-Sasakian Spacetimes. Konuralp J. Math. April 2025;13(1):1-13.
Chicago Yadav, Sunıl, and Ahmet Yıldız. “New Results on the Perfect Fluid Lorentzian Para-Sasakian Spacetimes”. Konuralp Journal of Mathematics 13, no. 1 (April 2025): 1-13.
EndNote Yadav S, Yıldız A (April 1, 2025) New Results on the Perfect Fluid Lorentzian Para-Sasakian Spacetimes. Konuralp Journal of Mathematics 13 1 1–13.
IEEE S. Yadav and A. Yıldız, “New Results on the Perfect Fluid Lorentzian Para-Sasakian Spacetimes”, Konuralp J. Math., vol. 13, no. 1, pp. 1–13, 2025.
ISNAD Yadav, Sunıl - Yıldız, Ahmet. “New Results on the Perfect Fluid Lorentzian Para-Sasakian Spacetimes”. Konuralp Journal of Mathematics 13/1 (April 2025), 1-13.
JAMA Yadav S, Yıldız A. New Results on the Perfect Fluid Lorentzian Para-Sasakian Spacetimes. Konuralp J. Math. 2025;13:1–13.
MLA Yadav, Sunıl and Ahmet Yıldız. “New Results on the Perfect Fluid Lorentzian Para-Sasakian Spacetimes”. Konuralp Journal of Mathematics, vol. 13, no. 1, 2025, pp. 1-13.
Vancouver Yadav S, Yıldız A. New Results on the Perfect Fluid Lorentzian Para-Sasakian Spacetimes. Konuralp J. Math. 2025;13(1):1-13.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.