Research Article
BibTex RIS Cite

An Innovative Technique for Solving Singularly Perturbed Problems with Integral Boundary Conditions on the Non-Uniform Mesh

Year 2025, Volume: 13 Issue: 1, 50 - 59, 30.04.2025

Abstract

We investigate an innovative numerical method for solving linear singularly perturbed problems with integral boundary conditions. Firstly, proving a uniformly convergent numerical method for solving the singularly perturbed problem is the main goal of this problem. Secondly, a piecewise equidistant mesh is used to generate the finite difference scheme. Next, the difference technique's stability and convergence analysis are covered. Lastly, two test instances' numerical results are shown.

References

  • [1] Adzic, N.: Spectral approximation and nonlocal boundary value problems. Novi Sad J. Math. 30, 1-10 (2000)
  • [2] Amiraliyev, G.M., Mamedov, Y.D.: Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations. Turkish J. Math., 19, 207-222 (1995)
  • [3] Amiraliyev, G.M., Amiraliyeva I.G, and Kudu M.: A Numerical Treatment for Singularly Perturbed Differential Equations with Integral Boundary Condition. Appl. Math. Comput., 185, 574-582 (2007)
  • [4] Bakhvalov, N.S.: The optimization of methods of solving boundary value problems with a boundary layer. USSR Comp. Math. Math. Phys. 9, 139-166 (1969)
  • [5] Benchohra, M., Ntouyas, S.K.: Existence of solutions of nonlinear differential equations with nonlocal conditions. J. Math. Analy. Appl. 252(1), 477-483 (2000)
  • [6] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Analy. Applicat. 162(2), 494-505 (1991)
  • [7] Cakir, M.: Uniform second-order difference method for a singularly perturbed three-point boundary value problem. Advances in Diff Equ. 2010, 1-13 (2010)
  • [8] Cakir, M., Amiraliyev, G.M.: A second order numerical method for singularly perturbed problem with non-local boundary condition. Journal of Applied Mathematics and Computing, 67(1), 919-936 (2021)
  • [9] Chegis, R.: The Numerical solution of singularly perturbed nonlocal problem. Lietuvos Matematikos Rinkinys (in Russian), 28, 144-152 (1988)
  • [10] Doolan, E.P., Miller, J.J.H., Schilders, W.H.A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press, Dublin (1980)
  • [11] Farrel, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman Hall/CRC, New York (2000)
  • [12] Gupta, C.P., Trofimchuk, S.I.: A sharper condition for the solvability of a three-point second order boundary value problem. J. Math. Anal and Appl. 205, 586-597 (1997)
  • [13] Herceg, D.: On the numerical solutions of a singularly perturbed nonlocal problem. Univ. U Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Math., 20, 1-10 (1990)
  • [14] Jankowski T. Extensions of quasilinearization method for differential equations with integral boundary conditions. Math Comput Modell, 37, 155-165 (2003)
  • [15] Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics. Springer, New York (1981)
  • [16] Kopteva, N., and O’Riordan, E.: Shishkin meshes in the numerical solution of singularly perturbed differential equations. Int. J. Num. Analy. Mod., 7, 393-415 (2010)
  • [17] Kudu M, Amirali I.G, Amiraliyev, G.M.: A Layer Analysis of Parameterized Singularly Perturbed Boundary Value Problem. IJAM, 29(4), 439-449 (2016)
  • [18] Kudu M, Amirali I.G, Amiraliyev, G.M.: Uniform numerical approximation for parameter dependent singularly perturbed problem with integral boundary condition. Miskolc Mathematical Notes, 19(1), 337-353 (2018)
  • [19] Linss, T.: Layer-adapted meshes for convection-diffusion problems. Comput Meth. Appl. Mech. and Eng., 192(9-10), 1061-1105 (2003)
  • [20] Linss, T., Stynes, M.: A hybrid difference on a Shishkin mesh linear convection-diffusion problems. Applied Numer. Math., 31(3), 255-270 (1999).
  • [21] Miller, JJH., O’Riordan, E., and Shishkin, GI., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific, Singapore, (1996)
  • [22] Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1993)
  • [23] O’Malley, R.E.: Singular Perturbation Methods for Ordinary Differential Equations. Springer Verlag, New York (1991)
  • [24] Roos, HG., Stynes M., Tobiska L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. 2nd ed. Springer Verlag, Berlin (2008)
  • [25] Sapagovas, M., Chegis R.: On some boundary value problems with nonlocal condition. in Russian, Differ. Equ. 23, 1268-1274 (1987)
  • [26] Shishkin, G.I.: Grid approximation of a singularly perturbed elliptic convection-diffusion equation in an unbounded domain, Russ. J. Numer. Aanal. Math. Modell., 21 , 67-94 (2006)
  • [27] Smith, D.R.: Singular Perturbation Theory. Cambridge University Press, Cambridge (1985)
  • [28] Stynes, M., Roos, H.G., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Verlag, Berlin (2008)
  • [29] Temel, Z. and Cakir, M..: A Robust Numerical Method for a Singularly Perturbed Semilinear Problem with Integral Boundary Conditions. Contemp. Math., 5 , 446-464 (2024)
  • [30] Temel, Z. and Cakir, M.: A New Numerical Scheme for Singularly Perturbed Reaction Diffusion Problems. Gazi Uni. J. Sci., 36, 792-805 (2023)
Year 2025, Volume: 13 Issue: 1, 50 - 59, 30.04.2025

Abstract

References

  • [1] Adzic, N.: Spectral approximation and nonlocal boundary value problems. Novi Sad J. Math. 30, 1-10 (2000)
  • [2] Amiraliyev, G.M., Mamedov, Y.D.: Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations. Turkish J. Math., 19, 207-222 (1995)
  • [3] Amiraliyev, G.M., Amiraliyeva I.G, and Kudu M.: A Numerical Treatment for Singularly Perturbed Differential Equations with Integral Boundary Condition. Appl. Math. Comput., 185, 574-582 (2007)
  • [4] Bakhvalov, N.S.: The optimization of methods of solving boundary value problems with a boundary layer. USSR Comp. Math. Math. Phys. 9, 139-166 (1969)
  • [5] Benchohra, M., Ntouyas, S.K.: Existence of solutions of nonlinear differential equations with nonlocal conditions. J. Math. Analy. Appl. 252(1), 477-483 (2000)
  • [6] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Analy. Applicat. 162(2), 494-505 (1991)
  • [7] Cakir, M.: Uniform second-order difference method for a singularly perturbed three-point boundary value problem. Advances in Diff Equ. 2010, 1-13 (2010)
  • [8] Cakir, M., Amiraliyev, G.M.: A second order numerical method for singularly perturbed problem with non-local boundary condition. Journal of Applied Mathematics and Computing, 67(1), 919-936 (2021)
  • [9] Chegis, R.: The Numerical solution of singularly perturbed nonlocal problem. Lietuvos Matematikos Rinkinys (in Russian), 28, 144-152 (1988)
  • [10] Doolan, E.P., Miller, J.J.H., Schilders, W.H.A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press, Dublin (1980)
  • [11] Farrel, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman Hall/CRC, New York (2000)
  • [12] Gupta, C.P., Trofimchuk, S.I.: A sharper condition for the solvability of a three-point second order boundary value problem. J. Math. Anal and Appl. 205, 586-597 (1997)
  • [13] Herceg, D.: On the numerical solutions of a singularly perturbed nonlocal problem. Univ. U Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Math., 20, 1-10 (1990)
  • [14] Jankowski T. Extensions of quasilinearization method for differential equations with integral boundary conditions. Math Comput Modell, 37, 155-165 (2003)
  • [15] Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics. Springer, New York (1981)
  • [16] Kopteva, N., and O’Riordan, E.: Shishkin meshes in the numerical solution of singularly perturbed differential equations. Int. J. Num. Analy. Mod., 7, 393-415 (2010)
  • [17] Kudu M, Amirali I.G, Amiraliyev, G.M.: A Layer Analysis of Parameterized Singularly Perturbed Boundary Value Problem. IJAM, 29(4), 439-449 (2016)
  • [18] Kudu M, Amirali I.G, Amiraliyev, G.M.: Uniform numerical approximation for parameter dependent singularly perturbed problem with integral boundary condition. Miskolc Mathematical Notes, 19(1), 337-353 (2018)
  • [19] Linss, T.: Layer-adapted meshes for convection-diffusion problems. Comput Meth. Appl. Mech. and Eng., 192(9-10), 1061-1105 (2003)
  • [20] Linss, T., Stynes, M.: A hybrid difference on a Shishkin mesh linear convection-diffusion problems. Applied Numer. Math., 31(3), 255-270 (1999).
  • [21] Miller, JJH., O’Riordan, E., and Shishkin, GI., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific, Singapore, (1996)
  • [22] Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1993)
  • [23] O’Malley, R.E.: Singular Perturbation Methods for Ordinary Differential Equations. Springer Verlag, New York (1991)
  • [24] Roos, HG., Stynes M., Tobiska L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. 2nd ed. Springer Verlag, Berlin (2008)
  • [25] Sapagovas, M., Chegis R.: On some boundary value problems with nonlocal condition. in Russian, Differ. Equ. 23, 1268-1274 (1987)
  • [26] Shishkin, G.I.: Grid approximation of a singularly perturbed elliptic convection-diffusion equation in an unbounded domain, Russ. J. Numer. Aanal. Math. Modell., 21 , 67-94 (2006)
  • [27] Smith, D.R.: Singular Perturbation Theory. Cambridge University Press, Cambridge (1985)
  • [28] Stynes, M., Roos, H.G., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Verlag, Berlin (2008)
  • [29] Temel, Z. and Cakir, M..: A Robust Numerical Method for a Singularly Perturbed Semilinear Problem with Integral Boundary Conditions. Contemp. Math., 5 , 446-464 (2024)
  • [30] Temel, Z. and Cakir, M.: A New Numerical Scheme for Singularly Perturbed Reaction Diffusion Problems. Gazi Uni. J. Sci., 36, 792-805 (2023)
There are 30 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Articles
Authors

Zelal Temel

Musa Çakır

Early Pub Date April 28, 2025
Publication Date April 30, 2025
Submission Date November 12, 2024
Acceptance Date December 27, 2024
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Temel, Z., & Çakır, M. (2025). An Innovative Technique for Solving Singularly Perturbed Problems with Integral Boundary Conditions on the Non-Uniform Mesh. Konuralp Journal of Mathematics, 13(1), 50-59.
AMA Temel Z, Çakır M. An Innovative Technique for Solving Singularly Perturbed Problems with Integral Boundary Conditions on the Non-Uniform Mesh. Konuralp J. Math. April 2025;13(1):50-59.
Chicago Temel, Zelal, and Musa Çakır. “An Innovative Technique for Solving Singularly Perturbed Problems With Integral Boundary Conditions on the Non-Uniform Mesh”. Konuralp Journal of Mathematics 13, no. 1 (April 2025): 50-59.
EndNote Temel Z, Çakır M (April 1, 2025) An Innovative Technique for Solving Singularly Perturbed Problems with Integral Boundary Conditions on the Non-Uniform Mesh. Konuralp Journal of Mathematics 13 1 50–59.
IEEE Z. Temel and M. Çakır, “An Innovative Technique for Solving Singularly Perturbed Problems with Integral Boundary Conditions on the Non-Uniform Mesh”, Konuralp J. Math., vol. 13, no. 1, pp. 50–59, 2025.
ISNAD Temel, Zelal - Çakır, Musa. “An Innovative Technique for Solving Singularly Perturbed Problems With Integral Boundary Conditions on the Non-Uniform Mesh”. Konuralp Journal of Mathematics 13/1 (April 2025), 50-59.
JAMA Temel Z, Çakır M. An Innovative Technique for Solving Singularly Perturbed Problems with Integral Boundary Conditions on the Non-Uniform Mesh. Konuralp J. Math. 2025;13:50–59.
MLA Temel, Zelal and Musa Çakır. “An Innovative Technique for Solving Singularly Perturbed Problems With Integral Boundary Conditions on the Non-Uniform Mesh”. Konuralp Journal of Mathematics, vol. 13, no. 1, 2025, pp. 50-59.
Vancouver Temel Z, Çakır M. An Innovative Technique for Solving Singularly Perturbed Problems with Integral Boundary Conditions on the Non-Uniform Mesh. Konuralp J. Math. 2025;13(1):50-9.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.