Research Article
BibTex RIS Cite

q-Leonardo Hyper Dual Numbers

Year 2025, Volume: 13 Issue: 2, 317 - 324, 31.10.2025

Abstract

In the present paper, the hyper-Dual Leonardo numbers will be introduced with the use of q-integer. Some algebraic properties of these numbers such as recurrence relation, generating function, Honsberger identity, Catalan's identity, Cassini's identity,the Binet's formula and sum formulas will also be obtained.

References

  • [2] A. Cohen and M. Shoham, Application of hyper-dual numbers to rigid bodies equations of motion. J. Mech. Mach. Theory, 111 (2017), 76-84 .
  • [3] A. F. Horadam, Basic properties of a certain generalized sequence of numbers. Fibonacci Q., 3 (1965), 161-176.
  • [4] A. Karatas, On complex Leonardo numbers, Notes on Number Theory and Discrete Mathematics, (2022).
  • [5] Adler, S. L. , Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, 88 (1995).
  • [6] A. G. Shannon, A note on generalized Leonardo numbers., Notes on Number Theory and Discrete Mathematics, 25(3) (2019), 97-101.
  • [7] Arfken G. B., and Weber H. J. Mathematical methods for physicists, American Association of Physics Teachers, (1999).
  • [8] Andrews G. E., Askey R., and Roy R. Special functions, Cambridge University Press, 71, (1999).
  • [9] C. Kızılates and T. Kone, On higher order Fibonacci quaternions, J. Anal., (2021), DOI: 10.1007/s41478-020-00295-1.
  • [10] C. Kızılates¸, A new generalization of Fibonacci hybrid and Lucas hybrid numbers., Chaos, Solitons and Fractals, 130, 109449, (2020)
  • [11] C. Kızılates , T. Kone, On higher order Fibonacci hyper complex numbers, Chaos Solitons Fractals 148 (2021), 111044.
  • [12] D. Rochon and M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers., Anal. Univ. Oradea, fasc. math, 11, (71), (2004), 110.
  • [13] F. Torunbalcı Aydın, Bicomplex fibonacci quaternions., Chaos Solitons Fractals, Vol. 106, (2018), 147-153
  • [14] F. Torunbalcı Aydın, q-Leonardo Bicomplex Numbers, Konuralp Journal of Mathematics, 11(2) (2023), 176-183.
  • [15] F. R. V. Alves and P. Catarino, A forma matricial dos n´umeros de Leonardo, Ciencia e natura, 42 (2020).
  • [16] Hoggatt V. E., Fibonacci and Lucas Numbers, A publication of the Fibonacci Association University of Santa Clara, Santa Clara, Houghton Mifflin Company, 1969.
  • [17] I. Akkus, G. Kizilaslan, Quaternions: Quantum calculus approach with applications., Kuwait Journal of Science, 46 (4), (2019)
  • [18] J. A. Fike, Numerically exact derivative calculations using hyper-dual numbers, 3rd Annual Student Joint Workshop in Simulation-Based Engineering and Design, (2009).
  • [19] J. A. Fike and J. J. Alonso, The development of hyper-dual numbers for exact second-derivative calculations, 49th AIAA Aerodpace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, (2011), 4-7.
  • [20] S. Halıcı, On bicomplex Fibonacci numbers and their generalization, Models and Theories in Social Systems, (2019), 509-524
  • [21] S. Halici, On Fibonacci quaternions, Adv. Appl. Clifford Algebras, 22 (2012), 321-327.
  • [22] Kac V. G., and Cheung P. Quantum calculus, Springer 113, (2002).
  • [23] Koshy T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons: Hoboken, NJ, USA, 2019.
  • [24] F. Kuruz, A. Dagdeviren and P. Catarino, On Leonardo Pisano Hybrinomials, Mathematics, 9 (2021), 2923. https:/doi.org/10.3390/math9222923
  • [25] M. Turan, S. O¨ zkaldı Karakus¸, and S. Kaya Nurkan, “A new perspective on bicomplex numbers with Leonardo number components”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 2 2023, pp. 340–351. doi: 10.31801/cfsuasmas.1181930.
  • [26] M. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex numbers and their elementary functions., Cubo (Temuco) 14 (2), (2012), 61-80.
  • [27] M. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex holomorphic functions: the algebra, geometry and analysis of bicomplex numbers., Birkhauser, (2015).
  • [28] ] N. Omur, S. Koparal, On hyper-dual generalized Fibonacci numbers, Notes on Number Theory and Discrete Mathematics, 26(1) (2020), 191-198
  • [29] ] Segre C. Le rappresentazioni reali delle forme complesse e gli ente iper-algebrici, Mathematische Annalen, Vol. 40(3), 413-467 (1892).
  • [30] S. K. Nurkan, I. A. Guven, Dual Fibonacci quaternions, Adv. Appl. Clifford Algebras, 25(2) (2015), 403-414.
  • [31] S. Nurkan And ˙I. G¨uven, ”A Note on Bicomplex Fibonacci and Lucas Numbers,” International Journal Of Pure and Applied Mathematics , vol.291, no.3 2018, 365-377.
  • [32] S. Ozkaldı Karakus¸, S. Kaya Nurkan, and M. Turan, “Hyper-Dual Leonardo Numbers”, Konuralp J. Math., vol. 10, no. 2, pp. 269–275, 2022.
  • [33] Sloane N. J. A., The on-line encyclopedia of integers sequences, Http.//oeis.org , 1964
  • [34] O. Dis¸kaya, H. Menken and P. M. M. C. Catarino, On the hyperbolic Leonardo and hyperbolic Francois quaternions, Journal of New Theory, (42) (2023), 74-85 .
  • [35] P. Catarino, and Anabela Borges, On leonardo numbers., Acta Mathematica Universitatis Comenianae, 89(1), (2019), 75-76.
  • [36] P. Catarino and A. Borges, A note on incomplete Leonardo numbers., Integers, Vol. 20(7), (2020).
  • [37] W. K Clifford, Preliminary sketch of biquaternions, Proc London Mathematical Society. 4(64) (1873), 381-395.
  • [38] Vajda S., Fibonacci and Lucas Numbers and the golden section, Ellis Horwood Limited Publ., England, 1989
  • [39] R. P. M. Vieira, F. R. V. Alves, and P. M. M. C. Catarino, Relac¸oes bidimensionais e identidades da sequ ˜ encia de Leonardo. , Revista Sergipana de Matematica e Educac¸ ´ ao Matem ˜ atica, 4(2), (2019), 156-173 .
  • [40] Y. Alp and E.G. Kocer, Some properties of Leonardo numbers, Konuralp Journal of Mathematics (KJM), 9(1) (2021), 183-189.
  • [41] Y. Alp and E.G. Koc¸er, Hybrid Leonardo numbers, Chaos Solitons and Fractals ,150 (2021), 111–128.
  • [42] Y. Soykan, Generalized Leonardo numbers, Journal of Progressive Research in Mathematics, 18(4) (2021), 58-84.

Year 2025, Volume: 13 Issue: 2, 317 - 324, 31.10.2025

Abstract

References

  • [2] A. Cohen and M. Shoham, Application of hyper-dual numbers to rigid bodies equations of motion. J. Mech. Mach. Theory, 111 (2017), 76-84 .
  • [3] A. F. Horadam, Basic properties of a certain generalized sequence of numbers. Fibonacci Q., 3 (1965), 161-176.
  • [4] A. Karatas, On complex Leonardo numbers, Notes on Number Theory and Discrete Mathematics, (2022).
  • [5] Adler, S. L. , Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, 88 (1995).
  • [6] A. G. Shannon, A note on generalized Leonardo numbers., Notes on Number Theory and Discrete Mathematics, 25(3) (2019), 97-101.
  • [7] Arfken G. B., and Weber H. J. Mathematical methods for physicists, American Association of Physics Teachers, (1999).
  • [8] Andrews G. E., Askey R., and Roy R. Special functions, Cambridge University Press, 71, (1999).
  • [9] C. Kızılates and T. Kone, On higher order Fibonacci quaternions, J. Anal., (2021), DOI: 10.1007/s41478-020-00295-1.
  • [10] C. Kızılates¸, A new generalization of Fibonacci hybrid and Lucas hybrid numbers., Chaos, Solitons and Fractals, 130, 109449, (2020)
  • [11] C. Kızılates , T. Kone, On higher order Fibonacci hyper complex numbers, Chaos Solitons Fractals 148 (2021), 111044.
  • [12] D. Rochon and M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers., Anal. Univ. Oradea, fasc. math, 11, (71), (2004), 110.
  • [13] F. Torunbalcı Aydın, Bicomplex fibonacci quaternions., Chaos Solitons Fractals, Vol. 106, (2018), 147-153
  • [14] F. Torunbalcı Aydın, q-Leonardo Bicomplex Numbers, Konuralp Journal of Mathematics, 11(2) (2023), 176-183.
  • [15] F. R. V. Alves and P. Catarino, A forma matricial dos n´umeros de Leonardo, Ciencia e natura, 42 (2020).
  • [16] Hoggatt V. E., Fibonacci and Lucas Numbers, A publication of the Fibonacci Association University of Santa Clara, Santa Clara, Houghton Mifflin Company, 1969.
  • [17] I. Akkus, G. Kizilaslan, Quaternions: Quantum calculus approach with applications., Kuwait Journal of Science, 46 (4), (2019)
  • [18] J. A. Fike, Numerically exact derivative calculations using hyper-dual numbers, 3rd Annual Student Joint Workshop in Simulation-Based Engineering and Design, (2009).
  • [19] J. A. Fike and J. J. Alonso, The development of hyper-dual numbers for exact second-derivative calculations, 49th AIAA Aerodpace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, (2011), 4-7.
  • [20] S. Halıcı, On bicomplex Fibonacci numbers and their generalization, Models and Theories in Social Systems, (2019), 509-524
  • [21] S. Halici, On Fibonacci quaternions, Adv. Appl. Clifford Algebras, 22 (2012), 321-327.
  • [22] Kac V. G., and Cheung P. Quantum calculus, Springer 113, (2002).
  • [23] Koshy T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons: Hoboken, NJ, USA, 2019.
  • [24] F. Kuruz, A. Dagdeviren and P. Catarino, On Leonardo Pisano Hybrinomials, Mathematics, 9 (2021), 2923. https:/doi.org/10.3390/math9222923
  • [25] M. Turan, S. O¨ zkaldı Karakus¸, and S. Kaya Nurkan, “A new perspective on bicomplex numbers with Leonardo number components”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 2 2023, pp. 340–351. doi: 10.31801/cfsuasmas.1181930.
  • [26] M. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex numbers and their elementary functions., Cubo (Temuco) 14 (2), (2012), 61-80.
  • [27] M. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex holomorphic functions: the algebra, geometry and analysis of bicomplex numbers., Birkhauser, (2015).
  • [28] ] N. Omur, S. Koparal, On hyper-dual generalized Fibonacci numbers, Notes on Number Theory and Discrete Mathematics, 26(1) (2020), 191-198
  • [29] ] Segre C. Le rappresentazioni reali delle forme complesse e gli ente iper-algebrici, Mathematische Annalen, Vol. 40(3), 413-467 (1892).
  • [30] S. K. Nurkan, I. A. Guven, Dual Fibonacci quaternions, Adv. Appl. Clifford Algebras, 25(2) (2015), 403-414.
  • [31] S. Nurkan And ˙I. G¨uven, ”A Note on Bicomplex Fibonacci and Lucas Numbers,” International Journal Of Pure and Applied Mathematics , vol.291, no.3 2018, 365-377.
  • [32] S. Ozkaldı Karakus¸, S. Kaya Nurkan, and M. Turan, “Hyper-Dual Leonardo Numbers”, Konuralp J. Math., vol. 10, no. 2, pp. 269–275, 2022.
  • [33] Sloane N. J. A., The on-line encyclopedia of integers sequences, Http.//oeis.org , 1964
  • [34] O. Dis¸kaya, H. Menken and P. M. M. C. Catarino, On the hyperbolic Leonardo and hyperbolic Francois quaternions, Journal of New Theory, (42) (2023), 74-85 .
  • [35] P. Catarino, and Anabela Borges, On leonardo numbers., Acta Mathematica Universitatis Comenianae, 89(1), (2019), 75-76.
  • [36] P. Catarino and A. Borges, A note on incomplete Leonardo numbers., Integers, Vol. 20(7), (2020).
  • [37] W. K Clifford, Preliminary sketch of biquaternions, Proc London Mathematical Society. 4(64) (1873), 381-395.
  • [38] Vajda S., Fibonacci and Lucas Numbers and the golden section, Ellis Horwood Limited Publ., England, 1989
  • [39] R. P. M. Vieira, F. R. V. Alves, and P. M. M. C. Catarino, Relac¸oes bidimensionais e identidades da sequ ˜ encia de Leonardo. , Revista Sergipana de Matematica e Educac¸ ´ ao Matem ˜ atica, 4(2), (2019), 156-173 .
  • [40] Y. Alp and E.G. Kocer, Some properties of Leonardo numbers, Konuralp Journal of Mathematics (KJM), 9(1) (2021), 183-189.
  • [41] Y. Alp and E.G. Koc¸er, Hybrid Leonardo numbers, Chaos Solitons and Fractals ,150 (2021), 111–128.
  • [42] Y. Soykan, Generalized Leonardo numbers, Journal of Progressive Research in Mathematics, 18(4) (2021), 58-84.
There are 41 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Research Article
Authors

Murat Turan 0000-0001-9684-7924

Sıddıka Özkaldı Karakuş

Publication Date October 31, 2025
Submission Date September 29, 2024
Acceptance Date March 21, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Turan, M., & Özkaldı Karakuş, S. (2025). q-Leonardo Hyper Dual Numbers. Konuralp Journal of Mathematics, 13(2), 317-324.
AMA Turan M, Özkaldı Karakuş S. q-Leonardo Hyper Dual Numbers. Konuralp J. Math. October 2025;13(2):317-324.
Chicago Turan, Murat, and Sıddıka Özkaldı Karakuş. “Q-Leonardo Hyper Dual Numbers”. Konuralp Journal of Mathematics 13, no. 2 (October 2025): 317-24.
EndNote Turan M, Özkaldı Karakuş S (October 1, 2025) q-Leonardo Hyper Dual Numbers. Konuralp Journal of Mathematics 13 2 317–324.
IEEE M. Turan and S. Özkaldı Karakuş, “q-Leonardo Hyper Dual Numbers”, Konuralp J. Math., vol. 13, no. 2, pp. 317–324, 2025.
ISNAD Turan, Murat - Özkaldı Karakuş, Sıddıka. “Q-Leonardo Hyper Dual Numbers”. Konuralp Journal of Mathematics 13/2 (October2025), 317-324.
JAMA Turan M, Özkaldı Karakuş S. q-Leonardo Hyper Dual Numbers. Konuralp J. Math. 2025;13:317–324.
MLA Turan, Murat and Sıddıka Özkaldı Karakuş. “Q-Leonardo Hyper Dual Numbers”. Konuralp Journal of Mathematics, vol. 13, no. 2, 2025, pp. 317-24.
Vancouver Turan M, Özkaldı Karakuş S. q-Leonardo Hyper Dual Numbers. Konuralp J. Math. 2025;13(2):317-24.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.