Research Article
BibTex RIS Cite

Ceviz Septumunun Plazma Kolesterol Düzeyi ile İlişkili Enzim Yolakları Üzerine Etkileri

Year 2024, , 140 - 147, 30.06.2024
https://doi.org/10.18521/ktd.1332992

Abstract

Amaç: Kolesterol, canlı organizmaların hücresel fonksiyonunda rol oynayan önemli bir bileşiktir. Kan plazmasındaki fazlalığı veya eksikliği, hücre zar yapısının tahribine ve parçalanmasına neden olabilmektedir. Diyette, dengeli kolesterol alımını sürdürmek ve gerekirse tıbbi tedavi almak, bu olumsuz etkilerin önlenmesine yardımcı olabilmektedir. Ayrıca, halk arasında ceviz septumu gibi doğal ve bitkisel tedavilere başvurulmaktadır. Ceviz septumunun kolesterol metabolizması üzerindeki etkilerine ilişkin bilimsel verilerin yetersizliği nedeniyle, bu araştırma potansiyel etkilerini araştırmak için yapılmıştır.
Gereç ve Yöntem: Analiz, çeşitli çözücüler kullanılarak septumun ekstrakte edilmesiyle başlatıldı. Elde edilen ekstraktlar daha sonra GC-MS’te analiz edildi ve bileşikler, entegre kütüphane veri tabanı kullanılarak tanımlandı. Ekstraktların kolesterol esteraz ve HMG-CoA redüktaz üzerindeki etkilerini saptamak için kolorimetrik yöntem kullanıldı.
Bulgular: GC-MS taraması ile tespit edilen belirgin bileşikler arasında monofenol, 2,4-Di-tert-bütilfenol, 2,6-Di-tert-bütilfenol, etil linoleat ve bütil linoleate bulunmaktadır. HMG-CoA redüktaz analizinde en yüksek inhibisyon %3,2 oranıyla aseton ekstraktında gözlenirken kolesterol esteraz analizinde %13,6 oranıyla sulu ekstrakta gözlendi.
Sonuç: Ceviz septum ekstraktı, çeşitli kimyasal bileşikler içermesine rağmen, plazma kolesterol seviyelerini düzenleyen enzim yolaklarından HMG-CoA redüktaz ve kolesterol esteraz üzerinde, in vitro olarak, terapötik seviyede inhibitör etkisinin olmadığını göstermektedir. Diğer yollar üzerindeki etkilerini kapsamlı bir şekilde değerlendirmek için daha fazla araştırmanın gerekli olduğuna inanmaktayız.

Project Number

2019.04.03.1032

References

  • 1. Feingold KR. Cholesterol lowering drugs. 2000 [updated March 30, 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK395573/.
  • 2. Chiou S-Y, Lai G-W, Lin L-Y, Lin G. Kinetics and mechanisms of cholesterol esterase inhibition by cardiovascular drugs in vitro. Indian J Biochem Biophys. 2006;43:52-5.
  • 3. Nelson DL, Cox MM. Lehninger principles of biochemistry. 7th ed. New York: W. H. Freeman; 2017. 4. Low H, Hoang A, Sviridov D. Cholesterol efflux assay. JoVE (journal of visualized experiments). 2012(61):e3810.
  • 5. Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. The Journal of clinical investigation. 2002;110(7):905-11.
  • 6. Ebrahimi S, Jamei R, Nojoomi F, Zamanian Z. Persian walnut composition and its importance in human health. International Journal of Enteric Pathogens. 2018;6:3-9.
  • 7. Bashan İ, Bakman M. The Effect of Daily Walnut Consumption on Dyslipidemia. Journal of Food Quality. 2018;2018:4731826.
  • 8. Hayes D, Angove MJ, Tucci J, Dennis C. Walnuts (Juglans regia) Chemical Composition and Research in Human Health. Critical Reviews in Food Science and Nutrition. 2016;56(8):1231-41.
  • 9. Choi Y, Abdelmegeed MA, Akbar M, Song B-J. Dietary walnut reduces hepatic triglyceride content in high-fat-fed mice via modulation of hepatic fatty acid metabolism and adipose tissue inflammation. The Journal of Nutritional Biochemistry. 2016;30:116-25.
  • 10. Azhar R, Siddiqui A, Ali S. Effect of aqueous extract of walnut leaves on lipid profile and atherogenic ratio in hypercholesterolemic rats. The journal of islamic international medical college quarterly. 2015;92:224.
  • 11. Wang X, Chen D, Li Y, Zhao S, Chen C, Ning D. Alleviating effects of walnut green husk extract on disorders of lipid levels and gut bacteria flora in high fat diet-induced obesity rats. Journal of Functional Foods. 2019;52:576-86.
  • 12. Meng Q, Li Y, Xiao T, Zhang L, Xu D. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus. International Journal of Biological Macromolecules. 2017;105:431-7.
  • 13. Meng Q, Wang Y, Chen F, Xiao T, Zhang L. Polysaccharides from Diaphragma juglandis fructus: Extraction optimization, antitumor, and immune-enhancement effects. International Journal of Biological Macromolecules. 2018;115:835-45.
  • 14. Zangeneh A, Zangeneh M, Goodarzi N, Najafi F, Hagh Nazari L. Protective effects of aqueous extract of internal septum of walnut fruit on diabetic hepatopathy in streptozotocin-induced diabetic mice. Sci J Kurdistan Univ Med Sci. 2018;23(1):26-37.
  • 15. Pietsch M, Gütschow M. Alternate Substrate Inhibition of Cholesterol Esterase by Thieno[2,3-d][1,3]oxazin-4-ones. Journal of Biological Chemistry. 2002;277(27):24006-13.
  • 16. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459-72.
  • 17. Hayes D, Angove MJ, Tucci J, Dennis C. Walnuts (Juglans regia) Chemical Composition and Research in Human Health. Critical reviews in food science and nutrition. 2016;56(8):1231-41.
  • 18. Guasch-Ferré M, Li J, Hu FB, Salas-Salvadó J, Tobias DK. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: an updated meta-analysis and systematic review of controlled trials. The American journal of clinical nutrition. 2018;108(1):174-87.
  • 19. Li L, Tsao R, Yang R, Kramer JK, Hernandez M. Fatty acid profiles, tocopherol contents, and antioxidant activities of heartnut (Juglans ailanthifolia Var. cordiformis) and Persian walnut (Juglans regia L.). Journal of agricultural and food chemistry. 2007;55(4):1164-9.
  • 20. Pei Q, Liu Y, Peng S. Fatty Acid Profiling in Kernels Coupled with Chemometric Analyses as a Feasible Strategy for the Discrimination of Different Walnuts. Foods. 2022;11(4):500.
  • 21. Bezhuashivili MG, Kurashvili NZ. Chemical characteristics of the septa of the fruit ofJuglans regia. Chemistry of natural compounds. 1998;34(2):128-30.
  • 22. Esen ÖB. Health Related Properties of Different Parts of Walnut (Juglans regia L.) and Walnut Drink. Istanbul, YÖK Thesis No: 374058: Istanbul Technical University, Graduate School of Science Engineering and Technology, Department of Food Engineering; 2014.
  • 23. Rusu ME, Fizesan I, Pop A, Mocan A, Gheldiu A-M, Babota M, et al. Walnut (Juglans regia L.) Septum: Assessment of bioactive molecules and in vitro biological effects. Molecules. 2020;25(9):2187.
  • 24. Liu P, Li L, Song L, Sun X, Yan S, Huang W. Characterisation of phenolics in fruit septum of Juglans regia Linn. by ultra performance liquid chromatography coupled with Orbitrap mass spectrometer. Food chemistry. 2019;286:669-77.
  • 25. Hu Q, Liu J, Li J, Liu H, Dong N, Geng Y-y, et al. Phenolic composition and nutritional attributes of diaphragma juglandis fructus and shell of walnut (Juglans regia L.). Food Science and Biotechnology. 2020;29(2):187-96.
  • 26. Dong B, Wu M, Li H, Kraemer FB, Adeli K, Seidah NG, et al. Strong induction of PCSK9 gene expression through HNF1α and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. Journal of lipid research. 2010;51(6):1486-95.
  • 27. Luskey KL, Stevens B. Human 3-hydroxy-3-methylglutaryl coenzyme A reductase. Conserved domains responsible for catalytic activity and sterol-regulated degradation. The Journal of biological chemistry. 1985;260(18):10271-7.
  • 28. Oriakhi K, Uadia P. Hypolipidemic Activity of Tetracarpidium conophorum (African walnut) Seed Oil and Its Mechanism of Action. Planta Medica International Open. 2020;07(04):e170-e8.
  • 29. Baskaran G, Salvamani S, Ahmad SA, Shaharuddin NA, Pattiram PD, Shukor MY. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug design, development and therapy. 2015;9:509-17.
  • 30. Gholamhoseinian A, Shahouzehi B, Sharifi-Far F. Inhibitory activity of some plant methanol extracts on 3-hydroxy-3-methylglutaryl coenzyme a reductase. IJP - International Journal of Pharmacology. 2010;6(5):705-11.
  • 31. Hao K, Hu W, Hou M, Cao D, Wang Y, Guan Q, et al. Optimization of ultrasonic-assisted extraction of total phenolics from Citrus aurantium L. Blossoms and evaluation of free radical scavenging, Anti-HMG-CoA Reductase Activities. Molecules. 2019;24(13):2368.
  • 32. Yiğitkan S, Ertaş A, Fırat M, Yeşil Y, Orhan İE. Lamiaceae familyasina ait 37 tıbbi bitkinin HMG-KoA redüktaz inhibitör aktiviteleri. Gazi Sağlık Bilimleri Dergisi. 2016;5(3):24-33.
  • 33. Sompong W, Muangngam N, Kongpatpharnich A, Manacharoenlarp C, Amorworasin C, Suantawee T, et al. The inhibitory activity of herbal medicines on the keys enzymes and steps related to carbohydrate and lipid digestion. BMC Complementary and Alternative Medicine. 2016;16(1):439.
  • 34. Adisakwattana S, Intrawangso J, Hemrid A, Chanathong B, Mäkynen K. Extracts of edible plants inhibit pancreatic lipase, cholesterol esterase and cholesterol micellization, and bind bile acids. Food Technology and Biotechnology. 2012;50(1):11-6.
  • 35. Gururaja GM, Mundkinajeddu D, Dethe SM, Sangli GK, Abhilash K, Agarwal A. Cholesterol esterase inhibitory activity of bioactives from leaves of Mangifera indica L. Pharmacognosy Research. 2015;7(4):355.
  • 36. Zhang H-l, Wu Q-x, Wei X, Qin X-m. Pancreatic lipase and cholesterol esterase inhibitory effect of Camellia nitidissima Chi flower extracts in vitro and in vivo. Food Bioscience. 2020;37:100682.
  • 37. Asmaa BH, Ream N. In vitro screening of the pancreatic cholesterol esterase inhibitory activity of some medicinal plants grown in Syria. Int J Pharmacogn Phytochem Res. 2016;8(8):1432-6.
  • 38. Aissata KM, Wenping L, Lamine TS, Barra CJ, Sidikiba S. Effect of Selected Plant Extracts on Pancreatic Lipase Inhibition, Pancreatic Cholesterol Esterase Activities and Cholesterol Micellization. J Acad Ind Res. 2019;7:150.
  • 39. Mäkynen K, Jitsaardkul S, Tachasamran P, Sakai N, Puranachoti S, Nirojsinlapachai N, et al. Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp (Citrus grandis [L.] Osbeck) in Thailand. Food chemistry. 2013;139(1-4):735-43.
  • 40. Ngamukote S, Mäkynen K, Thilawech T, Adisakwattana S. Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules. 2011;16(6):5054-61.

Effects of Walnut Septum on The Enzyme Pathways Associated with Plasma Cholesterol Level

Year 2024, , 140 - 147, 30.06.2024
https://doi.org/10.18521/ktd.1332992

Abstract

Objective: Cholesterol is crucial compound that plays pivotal role in cellular function in living organisms. Its excess or deficiency in plasma can lead to destruction and disintegration of cell membrane structure. Maintaining balanced intake of cholesterol in diet and seeking medical treatment, if necessary, can help prevent these negative effects. Furthermore, people often resort to natural and herbal remedies, such as walnut septum. Due to dearth of scientific data regarding effects of walnut septum on cholesterol metabolism, this research was undertaken to explore its potential effects.
Method: Analysis was begun by extracting septum using various solvents. Resulting extracts were then analyzed using GC-MS, and compounds were identified by using an integrated library database. To detect effects of extracts on cholesterol esterase and HMG-CoA reductase, a colorimetric method was employed.
Result: Monophenol, 2,4-Di-tert-butylphenol, 2,6-Di-tert-butylphenol, ethyl linoleate, and butyl linoleate were some of compounds detected by GC-MS scanning. The highest inhibitions were observed in the enzymatic analysis, with a rate of 3.2% (acetone) in the HMG-CoA reductase analysis and 13.6% (water) in the cholesterol esterase analysis.
Conclusion: Although the walnut septum extract contains various chemical compounds, our in vitro analysis data suggest that there is no inhibitory effect at therapeutic level on enzyme pathways that regulate plasma cholesterol levels, namely HMG-CoA reductase and cholesterol esterase. We believe that further research is necessary to comprehensively evaluate its effects on other pathways.

Supporting Institution

Düzce University Research Fund

Project Number

2019.04.03.1032

References

  • 1. Feingold KR. Cholesterol lowering drugs. 2000 [updated March 30, 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK395573/.
  • 2. Chiou S-Y, Lai G-W, Lin L-Y, Lin G. Kinetics and mechanisms of cholesterol esterase inhibition by cardiovascular drugs in vitro. Indian J Biochem Biophys. 2006;43:52-5.
  • 3. Nelson DL, Cox MM. Lehninger principles of biochemistry. 7th ed. New York: W. H. Freeman; 2017. 4. Low H, Hoang A, Sviridov D. Cholesterol efflux assay. JoVE (journal of visualized experiments). 2012(61):e3810.
  • 5. Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. The Journal of clinical investigation. 2002;110(7):905-11.
  • 6. Ebrahimi S, Jamei R, Nojoomi F, Zamanian Z. Persian walnut composition and its importance in human health. International Journal of Enteric Pathogens. 2018;6:3-9.
  • 7. Bashan İ, Bakman M. The Effect of Daily Walnut Consumption on Dyslipidemia. Journal of Food Quality. 2018;2018:4731826.
  • 8. Hayes D, Angove MJ, Tucci J, Dennis C. Walnuts (Juglans regia) Chemical Composition and Research in Human Health. Critical Reviews in Food Science and Nutrition. 2016;56(8):1231-41.
  • 9. Choi Y, Abdelmegeed MA, Akbar M, Song B-J. Dietary walnut reduces hepatic triglyceride content in high-fat-fed mice via modulation of hepatic fatty acid metabolism and adipose tissue inflammation. The Journal of Nutritional Biochemistry. 2016;30:116-25.
  • 10. Azhar R, Siddiqui A, Ali S. Effect of aqueous extract of walnut leaves on lipid profile and atherogenic ratio in hypercholesterolemic rats. The journal of islamic international medical college quarterly. 2015;92:224.
  • 11. Wang X, Chen D, Li Y, Zhao S, Chen C, Ning D. Alleviating effects of walnut green husk extract on disorders of lipid levels and gut bacteria flora in high fat diet-induced obesity rats. Journal of Functional Foods. 2019;52:576-86.
  • 12. Meng Q, Li Y, Xiao T, Zhang L, Xu D. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus. International Journal of Biological Macromolecules. 2017;105:431-7.
  • 13. Meng Q, Wang Y, Chen F, Xiao T, Zhang L. Polysaccharides from Diaphragma juglandis fructus: Extraction optimization, antitumor, and immune-enhancement effects. International Journal of Biological Macromolecules. 2018;115:835-45.
  • 14. Zangeneh A, Zangeneh M, Goodarzi N, Najafi F, Hagh Nazari L. Protective effects of aqueous extract of internal septum of walnut fruit on diabetic hepatopathy in streptozotocin-induced diabetic mice. Sci J Kurdistan Univ Med Sci. 2018;23(1):26-37.
  • 15. Pietsch M, Gütschow M. Alternate Substrate Inhibition of Cholesterol Esterase by Thieno[2,3-d][1,3]oxazin-4-ones. Journal of Biological Chemistry. 2002;277(27):24006-13.
  • 16. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459-72.
  • 17. Hayes D, Angove MJ, Tucci J, Dennis C. Walnuts (Juglans regia) Chemical Composition and Research in Human Health. Critical reviews in food science and nutrition. 2016;56(8):1231-41.
  • 18. Guasch-Ferré M, Li J, Hu FB, Salas-Salvadó J, Tobias DK. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: an updated meta-analysis and systematic review of controlled trials. The American journal of clinical nutrition. 2018;108(1):174-87.
  • 19. Li L, Tsao R, Yang R, Kramer JK, Hernandez M. Fatty acid profiles, tocopherol contents, and antioxidant activities of heartnut (Juglans ailanthifolia Var. cordiformis) and Persian walnut (Juglans regia L.). Journal of agricultural and food chemistry. 2007;55(4):1164-9.
  • 20. Pei Q, Liu Y, Peng S. Fatty Acid Profiling in Kernels Coupled with Chemometric Analyses as a Feasible Strategy for the Discrimination of Different Walnuts. Foods. 2022;11(4):500.
  • 21. Bezhuashivili MG, Kurashvili NZ. Chemical characteristics of the septa of the fruit ofJuglans regia. Chemistry of natural compounds. 1998;34(2):128-30.
  • 22. Esen ÖB. Health Related Properties of Different Parts of Walnut (Juglans regia L.) and Walnut Drink. Istanbul, YÖK Thesis No: 374058: Istanbul Technical University, Graduate School of Science Engineering and Technology, Department of Food Engineering; 2014.
  • 23. Rusu ME, Fizesan I, Pop A, Mocan A, Gheldiu A-M, Babota M, et al. Walnut (Juglans regia L.) Septum: Assessment of bioactive molecules and in vitro biological effects. Molecules. 2020;25(9):2187.
  • 24. Liu P, Li L, Song L, Sun X, Yan S, Huang W. Characterisation of phenolics in fruit septum of Juglans regia Linn. by ultra performance liquid chromatography coupled with Orbitrap mass spectrometer. Food chemistry. 2019;286:669-77.
  • 25. Hu Q, Liu J, Li J, Liu H, Dong N, Geng Y-y, et al. Phenolic composition and nutritional attributes of diaphragma juglandis fructus and shell of walnut (Juglans regia L.). Food Science and Biotechnology. 2020;29(2):187-96.
  • 26. Dong B, Wu M, Li H, Kraemer FB, Adeli K, Seidah NG, et al. Strong induction of PCSK9 gene expression through HNF1α and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. Journal of lipid research. 2010;51(6):1486-95.
  • 27. Luskey KL, Stevens B. Human 3-hydroxy-3-methylglutaryl coenzyme A reductase. Conserved domains responsible for catalytic activity and sterol-regulated degradation. The Journal of biological chemistry. 1985;260(18):10271-7.
  • 28. Oriakhi K, Uadia P. Hypolipidemic Activity of Tetracarpidium conophorum (African walnut) Seed Oil and Its Mechanism of Action. Planta Medica International Open. 2020;07(04):e170-e8.
  • 29. Baskaran G, Salvamani S, Ahmad SA, Shaharuddin NA, Pattiram PD, Shukor MY. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug design, development and therapy. 2015;9:509-17.
  • 30. Gholamhoseinian A, Shahouzehi B, Sharifi-Far F. Inhibitory activity of some plant methanol extracts on 3-hydroxy-3-methylglutaryl coenzyme a reductase. IJP - International Journal of Pharmacology. 2010;6(5):705-11.
  • 31. Hao K, Hu W, Hou M, Cao D, Wang Y, Guan Q, et al. Optimization of ultrasonic-assisted extraction of total phenolics from Citrus aurantium L. Blossoms and evaluation of free radical scavenging, Anti-HMG-CoA Reductase Activities. Molecules. 2019;24(13):2368.
  • 32. Yiğitkan S, Ertaş A, Fırat M, Yeşil Y, Orhan İE. Lamiaceae familyasina ait 37 tıbbi bitkinin HMG-KoA redüktaz inhibitör aktiviteleri. Gazi Sağlık Bilimleri Dergisi. 2016;5(3):24-33.
  • 33. Sompong W, Muangngam N, Kongpatpharnich A, Manacharoenlarp C, Amorworasin C, Suantawee T, et al. The inhibitory activity of herbal medicines on the keys enzymes and steps related to carbohydrate and lipid digestion. BMC Complementary and Alternative Medicine. 2016;16(1):439.
  • 34. Adisakwattana S, Intrawangso J, Hemrid A, Chanathong B, Mäkynen K. Extracts of edible plants inhibit pancreatic lipase, cholesterol esterase and cholesterol micellization, and bind bile acids. Food Technology and Biotechnology. 2012;50(1):11-6.
  • 35. Gururaja GM, Mundkinajeddu D, Dethe SM, Sangli GK, Abhilash K, Agarwal A. Cholesterol esterase inhibitory activity of bioactives from leaves of Mangifera indica L. Pharmacognosy Research. 2015;7(4):355.
  • 36. Zhang H-l, Wu Q-x, Wei X, Qin X-m. Pancreatic lipase and cholesterol esterase inhibitory effect of Camellia nitidissima Chi flower extracts in vitro and in vivo. Food Bioscience. 2020;37:100682.
  • 37. Asmaa BH, Ream N. In vitro screening of the pancreatic cholesterol esterase inhibitory activity of some medicinal plants grown in Syria. Int J Pharmacogn Phytochem Res. 2016;8(8):1432-6.
  • 38. Aissata KM, Wenping L, Lamine TS, Barra CJ, Sidikiba S. Effect of Selected Plant Extracts on Pancreatic Lipase Inhibition, Pancreatic Cholesterol Esterase Activities and Cholesterol Micellization. J Acad Ind Res. 2019;7:150.
  • 39. Mäkynen K, Jitsaardkul S, Tachasamran P, Sakai N, Puranachoti S, Nirojsinlapachai N, et al. Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp (Citrus grandis [L.] Osbeck) in Thailand. Food chemistry. 2013;139(1-4):735-43.
  • 40. Ngamukote S, Mäkynen K, Thilawech T, Adisakwattana S. Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules. 2011;16(6):5054-61.
There are 39 citations in total.

Details

Primary Language English
Subjects Health Services and Systems (Other)
Journal Section Articles
Authors

Neslihan Şirin 0000-0002-3470-0043

Nuri Cenk Coşkun 0000-0002-9202-1145

Şevki Adem 0000-0003-2146-5870

Project Number 2019.04.03.1032
Publication Date June 30, 2024
Acceptance Date May 5, 2024
Published in Issue Year 2024

Cite

APA Şirin, N., Coşkun, N. C., & Adem, Ş. (2024). Effects of Walnut Septum on The Enzyme Pathways Associated with Plasma Cholesterol Level. Konuralp Medical Journal, 16(2), 140-147. https://doi.org/10.18521/ktd.1332992
AMA Şirin N, Coşkun NC, Adem Ş. Effects of Walnut Septum on The Enzyme Pathways Associated with Plasma Cholesterol Level. Konuralp Medical Journal. June 2024;16(2):140-147. doi:10.18521/ktd.1332992
Chicago Şirin, Neslihan, Nuri Cenk Coşkun, and Şevki Adem. “Effects of Walnut Septum on The Enzyme Pathways Associated With Plasma Cholesterol Level”. Konuralp Medical Journal 16, no. 2 (June 2024): 140-47. https://doi.org/10.18521/ktd.1332992.
EndNote Şirin N, Coşkun NC, Adem Ş (June 1, 2024) Effects of Walnut Septum on The Enzyme Pathways Associated with Plasma Cholesterol Level. Konuralp Medical Journal 16 2 140–147.
IEEE N. Şirin, N. C. Coşkun, and Ş. Adem, “Effects of Walnut Septum on The Enzyme Pathways Associated with Plasma Cholesterol Level”, Konuralp Medical Journal, vol. 16, no. 2, pp. 140–147, 2024, doi: 10.18521/ktd.1332992.
ISNAD Şirin, Neslihan et al. “Effects of Walnut Septum on The Enzyme Pathways Associated With Plasma Cholesterol Level”. Konuralp Medical Journal 16/2 (June 2024), 140-147. https://doi.org/10.18521/ktd.1332992.
JAMA Şirin N, Coşkun NC, Adem Ş. Effects of Walnut Septum on The Enzyme Pathways Associated with Plasma Cholesterol Level. Konuralp Medical Journal. 2024;16:140–147.
MLA Şirin, Neslihan et al. “Effects of Walnut Septum on The Enzyme Pathways Associated With Plasma Cholesterol Level”. Konuralp Medical Journal, vol. 16, no. 2, 2024, pp. 140-7, doi:10.18521/ktd.1332992.
Vancouver Şirin N, Coşkun NC, Adem Ş. Effects of Walnut Septum on The Enzyme Pathways Associated with Plasma Cholesterol Level. Konuralp Medical Journal. 2024;16(2):140-7.