Research Article
BibTex RIS Cite
Year 2020, , 73 - 79, 02.03.2020
https://doi.org/10.18521/ktd.498768

Abstract

References

  • KAYNAKLAR1. Ameri A. The effects of cannabinoids on the brain. Prog Neurobiol [Internet]. 1999 Jul [cited 2018 Dec 16];58(4):315–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/103680322. Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol [Internet]. 1988 Nov [cited 2018 Dec 16];34(5):605–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28481843. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature [Internet]. Nature Publishing Group; 1990 Aug 9 [cited 2018 Dec 16];346(6284):561–4. Available from: http://www.nature.com/doifinder/10.1038/346561a04. Pertwee RG. The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes (Lond) [Internet]. 2006 Apr 29 [cited 2018 Dec 16];30 Suppl 1(S1):S13-8. Available from: http://www.nature.com/articles/08032725. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature [Internet]. 1993 Sep 2 [cited 2018 Dec 16];365(6441):61–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/76897026. Tselnicker I, Keren O, Hefetz A, Pick CG, Sarne Y. A single low dose of tetrahydrocannabinol induces long-term cognitive deficits. Neurosci Lett [Internet]. 2007 Jan 10 [cited 2018 Dec 16];411(2):108–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/170926517. Kreutz S, Koch M, Ghadban C, Korf H-W, Dehghani F. Cannabinoids and neuronal damage: Differential effects of THC, AEA and 2-AG on activated microglial cells and degenerating neurons in excitotoxically lesioned rat organotypic hippocampal slice cultures. Exp Neurol [Internet]. 2007 Jan [cited 2018 Dec 16];203(1):246–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/170103398. Graham ES, Ashton JC, Glass M. Cannabinoid Receptors: A brief history and what not. Front Biosci (Landmark Ed [Internet]. 2009 [cited 2018 Dec 16];14:944–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/192731109. Schwilke EW, Schwope DM, Karschner EL, Lowe RH, Darwin WD, Kelly DL, et al. Delta9-tetrahydrocannabinol (THC), 11-hydroxy-THC, and 11-nor-9-carboxy-THC plasma pharmacokinetics during and after continuous high-dose oral THC. Clin Chem [Internet]. Clinical Chemistry; 2009 Dec 1 [cited 2018 Dec 16];55(12):2180–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1180501110. Huestis MA, Henningfield JE, Cone EJ. Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana. J Anal Toxicol [Internet]. [cited 2018 Dec 16];16(5):276–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/133821511. Oktay ARSLAN S. Morphine modulates microvascular leakage dose-dependently in the airway of ovalbumin-sensitized rats. Turk J Med Sci [Internet]. 2010 [cited 2017 Aug 1];40(2):279–86. Available from: http://journals.tubitak.gov.tr/medical/issues/sag-10-40-2/sag-40-2-16-0812-11.pdf12. Di Marzo V, Petrocellis L De. Plant, synthetic, and endogenous cannabinoids in medicine. Annu Rev Med [Internet]. 2006 Feb [cited 2018 Dec 16];57(1):553–74. Available from: http://www.annualreviews.org/doi/10.1146/annurev.med.57.011205.13564813. Parlar A, Arslan S, Doğan M, �am S, Yal�in A, Elibol E, et al. The exogenous administration of CB2 specific agonist, GW405833, inhibits inflammation by reducing cytokine production and oxidative stress. Exp Ther Med [Internet]. 2018 Sep 18 [cited 2018 Dec 16];16(6):4900–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3054244614. Zhou Y, Leri F. Neuroscience of opiates for addiction medicine. In: Progress in brain research [Internet]. 2016 [cited 2018 Dec 16]. p. 237–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2680677915. Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci [Internet]. 2004 Sep [cited 2018 Dec 16];49(9):1359–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1548130516. Gutteridge JMC, Halliwell B. Reoxygenation injury and antioxidant protection: A tale of two paradoxes. Arch Biochem Biophys [Internet]. Academic Press; 1990 Dec 1 [cited 2018 Dec 16];283(2):223–6. Available from: https://www.sciencedirect.com/science/article/abs/pii/000398619090635C?via%3Dihub17. Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. Gastroenterology [Internet]. 1981 Jul [cited 2018 Dec 16];81(1):22–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/626374318. Thomas DD, Sharar SR, Winn RK, Chi EY, Verrier ED, Allen MD, et al. CD18-independent mechanism of neutrophil emigration in the rabbit lung after ischemia-reperfusion. Ann Thorac Surg [Internet]. 1995 Nov [cited 2018 Dec 16];60(5):1360–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/852662719. Ambrosio G, Zweier JL, Flaherty JT. The relationship between oxygen radical generation and impairment of myocardial energy metabolism following post-ischemic reperfusion. J Mol Cell Cardiol [Internet]. 1991 Dec [cited 2018 Dec 16];23(12):1359–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/181105520. Hearse DJ, Humphrey SM, Chain EB. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: A study of myocardial enzyme release. J Mol Cell Cardiol [Internet]. Academic Press; 1973 Aug 1 [cited 2018 Dec 16];5(4):395–407. Available from: https://www.sciencedirect.com/science/article/pii/0022282873900308?via%3Dihub21. Younes M, Schoenberg MH, Jung H, Fredholm BB, Haglund U, Schildberg FW. Oxidative tissue damage following regional intestinal ischemia and reperfusion in the cat. Res Exp Med (Berl) [Internet]. 1984 [cited 2018 Dec 16];184(4):259–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/609321122. Murry CE, Richard VJ, Jennings RB, Reimer KA. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol Circ Physiol [Internet]. 1991 Mar [cited 2018 Dec 16];260(3):H796–804. Available from: http://www.ncbi.nlm.nih.gov/pubmed/200097423. Heidorn M, Frodermann T, Böning A, Schreckenberg R, Schlüter K-D. Citrulline Improves Early Post-Ischemic Recovery or Rat Hearts In Vitro by Shifting Arginine Metabolism From Polyamine to Nitric Oxide Formation. Clin Med Insights Cardiol [Internet]. 2018 Jan 24 [cited 2018 Dec 17];12:117954681877190. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2988131924. Montalto MC, Hart ML, Jordan JE, Wada K, Stahl GL. Role for complement in mediating intestinal nitric oxide synthase-2 and superoxide dismutase expression. Am J Physiol Liver Physiol [Internet]. American Physiological Society; 2003 Jul [cited 2018 Dec 17];285(1):G197–206. Available from: http://www.physiology.org/doi/10.1152/ajpgi.00029.200325. Waldow T, Witt W, Ulmer A, Janke A, Alexiou K, Matschke K. Preconditioning by inhaled nitric oxide prevents hyperoxic and ischemia/reperfusion injury in rat lungs. Pulm Pharmacol Ther [Internet]. 2008 [cited 2018 Dec 17];21(2):418–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1845304526. Das KC, Misra HP. Amelioration of postischemic reperfusion injury by antiarrhythmic drugs in isolated perfused rat lung. Environ Health Perspect [Internet]. 1994 Dec [cited 2018 Dec 17];102(suppl 10):117–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/770528527. Hsu C-Y, Fang S-Y, Chen Y-Z, Roan J-N, Chang S-W, Huang C-C, et al. Cardiovascular Protection of Activating KATP Channel During Ischemia-Reperfusion Acidosis. Shock [Internet]. 2012 Jun [cited 2018 Dec 17];37(6):653–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2255201928. Kayaalp SO, Rasyonel tedavi yönünden tıbbi farmakoloji - Google Search [Internet]. [cited 2018 Dec 17]. Available from: https://www.google.com/search?q=Kayaalp+SO,+Rasyonel+tedavi+yönünden+tıbbi+farmakoloji&source=univ&tbm=shop&tbo=u&sa=X&ved=0ahUKEwig6dvFz6bfAhXEbFAKHYHpBBYQsxgIMA&biw=1366&bih=626#spd=1112434697159704253929. Bertrand C, Geppetti P, Baker J, Petersson G, Piedimonte G, Nadel JA. Role of peptidases and NK1 receptors in vascular extravasation induced by bradykinin in rat nasal mucosa. J Appl Physiol [Internet]. 1993 May [cited 2018 Dec 17];74(5):2456–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/839300230. Ballabeni V, Barocelli E, Bertoni S, Impicciatore M. Alterations of intestinal motor responsiveness in a model of mild mesenteric ischemia/reperfusion in rats. Life Sci [Internet]. 2002 Sep 13 [cited 2018 Dec 17];71(17):2025–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1217589631. Nackley AG, Zvonok AM, Makriyannis A, Hohmann AG. Activation of cannabinoid CB2 receptors suppresses C-fiber responses and windup in spinal wide dynamic range neurons in the absence and presence of inflammation. J Neurophysiol [Internet]. 2004 Dec [cited 2018 Dec 17];92(6):3562–74. Available from: http://www.physiology.org/doi/10.1152/jn.00886.200332. Ibrahim MM, Porreca F, Lai J, Albrecht PJ, Rice FL, Khodorova A, et al. CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci [Internet]. 2005 Feb 22 [cited 2018 Dec 17];102(8):3093–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1570571433. Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O’Donnell D. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci [Internet]. 2003 Jun [cited 2018 Dec 17];17(12):2750–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1282348234. Horváth B, Magid L, Mukhopadhyay P, Bátkai S, Rajesh M, Park O, et al. A new cannabinoid CB2 receptor agonist HU-910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury. Br J Pharmacol [Internet]. 2012 Apr [cited 2018 Dec 17];165(8):2462–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2144998235. Pressly JD, Mustafa SM, Adibi AH, Alghamdi S, Pandey P, Roy KK, et al. Selective Cannabinoid 2 Receptor Stimulation Reduces Tubular Epithelial Cell Damage after Renal Ischemia-Reperfusion Injury. J Pharmacol Exp Ther [Internet]. 2018 Feb [cited 2018 Dec 17];364(2):287–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2918759036. Maslov LN, Lasukova O V, Krylatov A V, Hanus LO, Pertwee R, Ivanchuk II, et al. Role of cannabinoid receptors in the regulation of cardiac contractility during ischemia/reperfusion. Bull Exp Biol Med [Internet]. 2006 Nov [cited 2018 Dec 17];142(5):557–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1741546137. Fouad AA, Al-Mulhim AS, Jresat I. Cannabidiol treatment ameliorates ischemia/reperfusion renal injury in rats. Life Sci [Internet]. 2012 Sep 17 [cited 2018 Dec 17];91(7–8):284–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/S002432051200392X

Sıçan İnce Barsak İskemi/Reperfüzyon Hasarında İleum ve Akciğer Dokusunda Görülen Damar Dışına Protein Kaçışının, Kanabinoid 2 Reseptör Agonisti (Am-1241) ile Kontrolü

Year 2020, , 73 - 79, 02.03.2020
https://doi.org/10.18521/ktd.498768

Abstract

Amaç: Kanabinoid 2 reseptör agonistinin İskemi/Reperfüzyon (İ/R) hasarı modelinde anti-inflamatuvar etkisinin olup olmadığını kanıtlamaktır.


Yöntem: Araştırmada; sıçanlarda barsak iskemi ve reperfüzyon modeli oluşturuldu. Kanabinoid 2 reseptör agonisti (AM-1241), iskemi ve reperfüzyon oluşturmadan hemen önce abdominal venden (iv) verildi. Sonrasında evans mavisi iv olarak uygulandı. Dokulara evans mavisinin geçişi çıplak gözle görüldü. Bu aşamadan hemen sonra sıçanın göğüs kafesi açıldı ve sistemik kan dolaşım havuzu usulüne uygun olarak boşaltıldı. Dokular tartıldıktan sonra 48 saat formamidde inkübasyona bırakıldı ve spektrofotometrede 620 nm dalgaboyunda ölçüm yapıldı.


Bulgular: İ/R grubu şam kontrol grubunu göre yaklaşık % 803 evans mavisi kaçışı izlendi. İ/R ve İ/R+CB2 agonist arasındaki fark ise agonistin proteinleri tutup, protein ve evans mavisinin doku sıvısına geçişini azalttığı görülür.


Sonuç: Kanabinoid 2 reseptör agonistinin, hem ileum dokusunda ve hem de uzak organda (akciğer) kılcal damarlardan dokuya protein kaçışını engellediği ve dolayısıyla ileum İ/R hasarında antiinflamatuar etki gösterdiği bulundu.

References

  • KAYNAKLAR1. Ameri A. The effects of cannabinoids on the brain. Prog Neurobiol [Internet]. 1999 Jul [cited 2018 Dec 16];58(4):315–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/103680322. Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol [Internet]. 1988 Nov [cited 2018 Dec 16];34(5):605–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28481843. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature [Internet]. Nature Publishing Group; 1990 Aug 9 [cited 2018 Dec 16];346(6284):561–4. Available from: http://www.nature.com/doifinder/10.1038/346561a04. Pertwee RG. The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes (Lond) [Internet]. 2006 Apr 29 [cited 2018 Dec 16];30 Suppl 1(S1):S13-8. Available from: http://www.nature.com/articles/08032725. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature [Internet]. 1993 Sep 2 [cited 2018 Dec 16];365(6441):61–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/76897026. Tselnicker I, Keren O, Hefetz A, Pick CG, Sarne Y. A single low dose of tetrahydrocannabinol induces long-term cognitive deficits. Neurosci Lett [Internet]. 2007 Jan 10 [cited 2018 Dec 16];411(2):108–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/170926517. Kreutz S, Koch M, Ghadban C, Korf H-W, Dehghani F. Cannabinoids and neuronal damage: Differential effects of THC, AEA and 2-AG on activated microglial cells and degenerating neurons in excitotoxically lesioned rat organotypic hippocampal slice cultures. Exp Neurol [Internet]. 2007 Jan [cited 2018 Dec 16];203(1):246–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/170103398. Graham ES, Ashton JC, Glass M. Cannabinoid Receptors: A brief history and what not. Front Biosci (Landmark Ed [Internet]. 2009 [cited 2018 Dec 16];14:944–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/192731109. Schwilke EW, Schwope DM, Karschner EL, Lowe RH, Darwin WD, Kelly DL, et al. Delta9-tetrahydrocannabinol (THC), 11-hydroxy-THC, and 11-nor-9-carboxy-THC plasma pharmacokinetics during and after continuous high-dose oral THC. Clin Chem [Internet]. Clinical Chemistry; 2009 Dec 1 [cited 2018 Dec 16];55(12):2180–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1180501110. Huestis MA, Henningfield JE, Cone EJ. Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana. J Anal Toxicol [Internet]. [cited 2018 Dec 16];16(5):276–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/133821511. Oktay ARSLAN S. Morphine modulates microvascular leakage dose-dependently in the airway of ovalbumin-sensitized rats. Turk J Med Sci [Internet]. 2010 [cited 2017 Aug 1];40(2):279–86. Available from: http://journals.tubitak.gov.tr/medical/issues/sag-10-40-2/sag-40-2-16-0812-11.pdf12. Di Marzo V, Petrocellis L De. Plant, synthetic, and endogenous cannabinoids in medicine. Annu Rev Med [Internet]. 2006 Feb [cited 2018 Dec 16];57(1):553–74. Available from: http://www.annualreviews.org/doi/10.1146/annurev.med.57.011205.13564813. Parlar A, Arslan S, Doğan M, �am S, Yal�in A, Elibol E, et al. The exogenous administration of CB2 specific agonist, GW405833, inhibits inflammation by reducing cytokine production and oxidative stress. Exp Ther Med [Internet]. 2018 Sep 18 [cited 2018 Dec 16];16(6):4900–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3054244614. Zhou Y, Leri F. Neuroscience of opiates for addiction medicine. In: Progress in brain research [Internet]. 2016 [cited 2018 Dec 16]. p. 237–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2680677915. Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci [Internet]. 2004 Sep [cited 2018 Dec 16];49(9):1359–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1548130516. Gutteridge JMC, Halliwell B. Reoxygenation injury and antioxidant protection: A tale of two paradoxes. Arch Biochem Biophys [Internet]. Academic Press; 1990 Dec 1 [cited 2018 Dec 16];283(2):223–6. Available from: https://www.sciencedirect.com/science/article/abs/pii/000398619090635C?via%3Dihub17. Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. Gastroenterology [Internet]. 1981 Jul [cited 2018 Dec 16];81(1):22–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/626374318. Thomas DD, Sharar SR, Winn RK, Chi EY, Verrier ED, Allen MD, et al. CD18-independent mechanism of neutrophil emigration in the rabbit lung after ischemia-reperfusion. Ann Thorac Surg [Internet]. 1995 Nov [cited 2018 Dec 16];60(5):1360–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/852662719. Ambrosio G, Zweier JL, Flaherty JT. The relationship between oxygen radical generation and impairment of myocardial energy metabolism following post-ischemic reperfusion. J Mol Cell Cardiol [Internet]. 1991 Dec [cited 2018 Dec 16];23(12):1359–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/181105520. Hearse DJ, Humphrey SM, Chain EB. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: A study of myocardial enzyme release. J Mol Cell Cardiol [Internet]. Academic Press; 1973 Aug 1 [cited 2018 Dec 16];5(4):395–407. Available from: https://www.sciencedirect.com/science/article/pii/0022282873900308?via%3Dihub21. Younes M, Schoenberg MH, Jung H, Fredholm BB, Haglund U, Schildberg FW. Oxidative tissue damage following regional intestinal ischemia and reperfusion in the cat. Res Exp Med (Berl) [Internet]. 1984 [cited 2018 Dec 16];184(4):259–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/609321122. Murry CE, Richard VJ, Jennings RB, Reimer KA. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol Circ Physiol [Internet]. 1991 Mar [cited 2018 Dec 16];260(3):H796–804. Available from: http://www.ncbi.nlm.nih.gov/pubmed/200097423. Heidorn M, Frodermann T, Böning A, Schreckenberg R, Schlüter K-D. Citrulline Improves Early Post-Ischemic Recovery or Rat Hearts In Vitro by Shifting Arginine Metabolism From Polyamine to Nitric Oxide Formation. Clin Med Insights Cardiol [Internet]. 2018 Jan 24 [cited 2018 Dec 17];12:117954681877190. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2988131924. Montalto MC, Hart ML, Jordan JE, Wada K, Stahl GL. Role for complement in mediating intestinal nitric oxide synthase-2 and superoxide dismutase expression. Am J Physiol Liver Physiol [Internet]. American Physiological Society; 2003 Jul [cited 2018 Dec 17];285(1):G197–206. Available from: http://www.physiology.org/doi/10.1152/ajpgi.00029.200325. Waldow T, Witt W, Ulmer A, Janke A, Alexiou K, Matschke K. Preconditioning by inhaled nitric oxide prevents hyperoxic and ischemia/reperfusion injury in rat lungs. Pulm Pharmacol Ther [Internet]. 2008 [cited 2018 Dec 17];21(2):418–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1845304526. Das KC, Misra HP. Amelioration of postischemic reperfusion injury by antiarrhythmic drugs in isolated perfused rat lung. Environ Health Perspect [Internet]. 1994 Dec [cited 2018 Dec 17];102(suppl 10):117–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/770528527. Hsu C-Y, Fang S-Y, Chen Y-Z, Roan J-N, Chang S-W, Huang C-C, et al. Cardiovascular Protection of Activating KATP Channel During Ischemia-Reperfusion Acidosis. Shock [Internet]. 2012 Jun [cited 2018 Dec 17];37(6):653–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2255201928. Kayaalp SO, Rasyonel tedavi yönünden tıbbi farmakoloji - Google Search [Internet]. [cited 2018 Dec 17]. Available from: https://www.google.com/search?q=Kayaalp+SO,+Rasyonel+tedavi+yönünden+tıbbi+farmakoloji&source=univ&tbm=shop&tbo=u&sa=X&ved=0ahUKEwig6dvFz6bfAhXEbFAKHYHpBBYQsxgIMA&biw=1366&bih=626#spd=1112434697159704253929. Bertrand C, Geppetti P, Baker J, Petersson G, Piedimonte G, Nadel JA. Role of peptidases and NK1 receptors in vascular extravasation induced by bradykinin in rat nasal mucosa. J Appl Physiol [Internet]. 1993 May [cited 2018 Dec 17];74(5):2456–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/839300230. Ballabeni V, Barocelli E, Bertoni S, Impicciatore M. Alterations of intestinal motor responsiveness in a model of mild mesenteric ischemia/reperfusion in rats. Life Sci [Internet]. 2002 Sep 13 [cited 2018 Dec 17];71(17):2025–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1217589631. Nackley AG, Zvonok AM, Makriyannis A, Hohmann AG. Activation of cannabinoid CB2 receptors suppresses C-fiber responses and windup in spinal wide dynamic range neurons in the absence and presence of inflammation. J Neurophysiol [Internet]. 2004 Dec [cited 2018 Dec 17];92(6):3562–74. Available from: http://www.physiology.org/doi/10.1152/jn.00886.200332. Ibrahim MM, Porreca F, Lai J, Albrecht PJ, Rice FL, Khodorova A, et al. CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci [Internet]. 2005 Feb 22 [cited 2018 Dec 17];102(8):3093–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1570571433. Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O’Donnell D. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci [Internet]. 2003 Jun [cited 2018 Dec 17];17(12):2750–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1282348234. Horváth B, Magid L, Mukhopadhyay P, Bátkai S, Rajesh M, Park O, et al. A new cannabinoid CB2 receptor agonist HU-910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury. Br J Pharmacol [Internet]. 2012 Apr [cited 2018 Dec 17];165(8):2462–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2144998235. Pressly JD, Mustafa SM, Adibi AH, Alghamdi S, Pandey P, Roy KK, et al. Selective Cannabinoid 2 Receptor Stimulation Reduces Tubular Epithelial Cell Damage after Renal Ischemia-Reperfusion Injury. J Pharmacol Exp Ther [Internet]. 2018 Feb [cited 2018 Dec 17];364(2):287–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2918759036. Maslov LN, Lasukova O V, Krylatov A V, Hanus LO, Pertwee R, Ivanchuk II, et al. Role of cannabinoid receptors in the regulation of cardiac contractility during ischemia/reperfusion. Bull Exp Biol Med [Internet]. 2006 Nov [cited 2018 Dec 17];142(5):557–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1741546137. Fouad AA, Al-Mulhim AS, Jresat I. Cannabidiol treatment ameliorates ischemia/reperfusion renal injury in rats. Life Sci [Internet]. 2012 Sep 17 [cited 2018 Dec 17];91(7–8):284–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/S002432051200392X
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Articles
Authors

Mustafa Hancı This is me

Ali Parlar

Seyfullah Oktay Arslan

Publication Date March 2, 2020
Acceptance Date November 11, 2019
Published in Issue Year 2020

Cite

APA Hancı, M., Parlar, A., & Arslan, S. O. (2020). Sıçan İnce Barsak İskemi/Reperfüzyon Hasarında İleum ve Akciğer Dokusunda Görülen Damar Dışına Protein Kaçışının, Kanabinoid 2 Reseptör Agonisti (Am-1241) ile Kontrolü. Konuralp Medical Journal, 12(1), 73-79. https://doi.org/10.18521/ktd.498768
AMA Hancı M, Parlar A, Arslan SO. Sıçan İnce Barsak İskemi/Reperfüzyon Hasarında İleum ve Akciğer Dokusunda Görülen Damar Dışına Protein Kaçışının, Kanabinoid 2 Reseptör Agonisti (Am-1241) ile Kontrolü. Konuralp Medical Journal. March 2020;12(1):73-79. doi:10.18521/ktd.498768
Chicago Hancı, Mustafa, Ali Parlar, and Seyfullah Oktay Arslan. “Sıçan İnce Barsak İskemi/Reperfüzyon Hasarında İleum Ve Akciğer Dokusunda Görülen Damar Dışına Protein Kaçışının, Kanabinoid 2 Reseptör Agonisti (Am-1241) Ile Kontrolü”. Konuralp Medical Journal 12, no. 1 (March 2020): 73-79. https://doi.org/10.18521/ktd.498768.
EndNote Hancı M, Parlar A, Arslan SO (March 1, 2020) Sıçan İnce Barsak İskemi/Reperfüzyon Hasarında İleum ve Akciğer Dokusunda Görülen Damar Dışına Protein Kaçışının, Kanabinoid 2 Reseptör Agonisti (Am-1241) ile Kontrolü. Konuralp Medical Journal 12 1 73–79.
IEEE M. Hancı, A. Parlar, and S. O. Arslan, “Sıçan İnce Barsak İskemi/Reperfüzyon Hasarında İleum ve Akciğer Dokusunda Görülen Damar Dışına Protein Kaçışının, Kanabinoid 2 Reseptör Agonisti (Am-1241) ile Kontrolü”, Konuralp Medical Journal, vol. 12, no. 1, pp. 73–79, 2020, doi: 10.18521/ktd.498768.
ISNAD Hancı, Mustafa et al. “Sıçan İnce Barsak İskemi/Reperfüzyon Hasarında İleum Ve Akciğer Dokusunda Görülen Damar Dışına Protein Kaçışının, Kanabinoid 2 Reseptör Agonisti (Am-1241) Ile Kontrolü”. Konuralp Medical Journal 12/1 (March 2020), 73-79. https://doi.org/10.18521/ktd.498768.
JAMA Hancı M, Parlar A, Arslan SO. Sıçan İnce Barsak İskemi/Reperfüzyon Hasarında İleum ve Akciğer Dokusunda Görülen Damar Dışına Protein Kaçışının, Kanabinoid 2 Reseptör Agonisti (Am-1241) ile Kontrolü. Konuralp Medical Journal. 2020;12:73–79.
MLA Hancı, Mustafa et al. “Sıçan İnce Barsak İskemi/Reperfüzyon Hasarında İleum Ve Akciğer Dokusunda Görülen Damar Dışına Protein Kaçışının, Kanabinoid 2 Reseptör Agonisti (Am-1241) Ile Kontrolü”. Konuralp Medical Journal, vol. 12, no. 1, 2020, pp. 73-79, doi:10.18521/ktd.498768.
Vancouver Hancı M, Parlar A, Arslan SO. Sıçan İnce Barsak İskemi/Reperfüzyon Hasarında İleum ve Akciğer Dokusunda Görülen Damar Dışına Protein Kaçışının, Kanabinoid 2 Reseptör Agonisti (Am-1241) ile Kontrolü. Konuralp Medical Journal. 2020;12(1):73-9.